
URBAN

TRANSPORTATION

NETWORKS

·I ____

_ __ _ __ _ _�___I 1_· _�_I

YOSEF SHEFFI
Massachusetts Institute of Technology

URBAN

TRANSPORTATION

NETWORKS:

Equilibrium Analysis

with Mathematical

Programming Methods

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

_ __ __ __ __

Library of Congress Cataloging in Publication Data

Sheffi, Yosef. (date)
Urban transportation networks.

Bibliography: p.
Includes index.
1. Urban transportation-Mathematical models.

I. Title.
HE305.S54 1984 388.4'0724 84-9913
ISBN 0-13-939729-9

Editorial/production supervision:
Gretchen K. Chenenko, Ros Herion, and Nancy DeWolfe

Interior design: Gretchen K. Chenenko
Cover design: Diane Saxe
Manufacturing buyer: Anthony Caruso
Cover photo: Ken Karp

© 1985 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book may be reproduced
in any form or by any means
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-939729-9 01

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

·i _··

To Anat

__I_ I_�___ �____ __

*1CI -- �-----31� ·r __-_---·I- ---- - - 111

Contents

PREFACE xv

Part I Urban Networks and Equilibrium

I URBAN TRANSPORTATION NETWORKS ANALYSIS 2

1.1 Equilibrium Analysis of Transportation
Systems 4
Systems approach to urban transportation, 4
Equilibrium in markets, 6
The transportation arena, 9

1.2 Network Representation 10
Representation of the urban road network, 11
Representation of the transit network, 13
Centroids and connectors, 14
Link performancefunctions, 16

1.3 Equilibrium over Urban Transportation
Networks 18

Definitions of equilibria, 18
A simple user-equilibrium example, 20
Outline, 23

1.4 Summary 24

1.5 Annotated References 25

1.6 Problems 25

vii

._.__ ___

Part II User Equilibrium 27

2 BASIC CONCEPTS IN MINIMIZATION PROBLEMS 28

2.1 Programs in One Variable 30

Unconstrained minimization programs, 30
Constrained minimization programs, 33

2.2 Multidimensional Programs 37

Unconstrained minimization programs, 37
Constrained minimization programs, 40

2.3 Some Special Programs 45

Nonnegativity constraints, 45
Linear equality constraints, 46
Nonnegativity and linear equality constraints, 48
More about Lagrangians, 49
Linear programs, 51

2.4 Summary 52

2.5 Annotated References 53

2.6 Problems 53

3 FORMULATING THE ASSIGNMENT PROBLEM
AS A MATHEMATICAL PROGRAM 56

3.1 The Basic Transformation 59

3.2 Equivalency Conditions 63

3.3 Uniqueness Conditions 66

3.4 The System-Optimization Formulation 69

3.5 User Equilibrium and System Optimum 72

3.6 Summary 78

3.7 Annotated References 78

3.8 Problems 79

4 REVIEW OF SOME OPTIMIZATION ALGORITHMS 81

4.1 One-dimensional Minimization 81

Interval reduction methods, 82
Curve-fitting methods, 87

4.2 Multivariate Minimization 90

Unconstrained minimization algorithms, 92
Constrained minimization algorithms, 95

CP ' - -111�-- -��----··1 I -I--- --

ContentsVIII

4.3 Convex Combinations Method 99

Algorithm, 99
Example, 104

4.4 Summary 107

4.5 Annotated References 108

4.6 Problems 108

5 SOLVING FOR USER EQUILIBRIUM 111

5.1 Heuristic Equilibration Techniques 111

Capacity restraint, 112
Incremental assignment, 115

5.2 Applying the Convex Combinations Method 116

5.3 Shortest Paths over a Network 122

Shortest-path algorithm, 122
Example, 124
Note on computer implementation, 125

5.4 Summary 129

5.5 Annotated References 130

5.6 Problems 131

Part III Extensions of User Equilibrium 133

6 USER EQUILIBRIUM WITH VARIABLE DEMAND 134

6.1 Equivalent Minimization Formulation 135
Motivation and interpretation, 136
Equivalence conditions, 137
Uniqueness conditions, 141

6.2 Solution Algorithm 141

6.3 Solution by Network Representation 146
The zero-cost overflow formulation, 146
The excess-demandformulation, 148
Example, 150
Computational considerations, 151

6.4 Mode Choice with Independent Modes 153
Equilibrium between modes, 154
Formulation and solution algorithm, 155
Example, 157

6.5 Summary 159

6.6 Annotated References 160

6.7 Problems 161

__ ___~~~~~~~~~~~~~~~~~~~ __._. _· -

Contents ix

Contents

7 TRIP DISTRIBUTION AND TRAFFIC ASSIGNMENT
MODELS 164

7.1 The UE Distribution/Assignment Problem 165

Problem formulation, 166
Algorithm, 168
Solution by network representation, 169

7.2 Distribution/Assignment with Destination
Demand Functions 171
Distribution/assignment with logitfunctions, 172
Direct algorithm and solution by network

representation, 174
Example, 176
Computational issues, 178
Double-stage algorithm, 179

7.3 Doubly Constrained Models 180

Entropy model, 182
Solution by the convex combinations algorithm, 185
Double-stage algorithm, 187
Evaluation, 188

7.4 Solving Hitchcock's Transportation Problem 189

7.5 Summary 197

7.6 Annotated References 198

7.7 Problems 198

8 EQUILIBRIUM WITH LINK INTERACTIONS 203

8.1 Two-Way Traffic Interactions 204

Equivalency conditions, 205
Uniqueness conditions, 207
Algorithm, 209
Example, 209
Extensions, 212

8.2 Equilibrium with Asymmetric Cost
Functions 214

Algorithm, 215
Proof of solution, 216
Example, 218
Convergence considerations and a streamlined

algorithm, 220
Example and comparison of algorithms, 224

8.3 Summary 227

8.4 Annotated References 228

8.5 Problems 229

· i

x

9 SUPERNETWORKS-MODELS OF JOINT TRAVEL
CHOICES 231

9.1 Modal Split in Mixed Traffic-Extensions 232
Mode split with full transit network, 232
Mode split with interdependent modes, 238
Non-UE transit assignment, 242

9.2 Joint Travel Decisions and Supernetworks 246
Joint modal split/distribution/assignment

model, 246
Joint modal split/distribution/assignment model

with variable demand, 251
Analysis of supernetworks, 253

9.3 Summary 255

9.4 Annotated References 256

9.5 Problems 256

Part IV Stochastic User Equilibrium 261

10 DISCRETE CHOICE MODELS AND TRAFFIC
ASSIGNMENT 262

10.1 Review of Discrete Choice Models 262

Choice function, 263
Multinomial logit, 264
Multinomial probit, 266
The satisfaction function, 269
Aggregate predictions, 270

10.2 Stochastic Network Loading 271
Route choice, 272
Another paradox of trafficflow, 275
The expected perceived travel time, 278
The nature of theflow variables, 280

10.3 Summary 282

10.4 Annotated References 283

10.5 Problems 284

11 STOCHASTIC NETWORK LOADING MODELS 286

11.1 Logit-Based Loading Models 286
STOCH algorithm, 288
Critique of logit-based network loading, 294

- -~~~_

xiContents

11.2 Probit-Based Loading Models 297
Derivation of perceived path travel times, 298
Algorithm, 300
Comparison of probit and logit loading

models, 302

11.3 Summary 305

11.4 Annotated References 306

11.5 Problems 306

12 STOCHASTIC USER EQUILIBRIUM 309

12.1 SUE Equivalent Minimization 312
Program formulation, 312
Equivalence conditions, 316
Uniqueness conditions, 318

12.2 Solution Algorithm 322

Method of successive averages, 324
Example, 328

12.3 More About Stochastic User Equilibrium 332

Computational trade-offsfor probit-based
SUE, 332

SUE with link interactions, 335
Note on methodology selection, 336
Joint travel choices and hypernetworks, 339

12.4 Summary 341

12.5 Annotated References 341

12.6 Problems 343

Part V Input Data 345

13 BACKGROUND FOR DEVELOPING THE ANALYSIS
INPUTS 346

13.1 Link Performance Functions 346

Traffic flow models, 347
Delay at signalized intersections, 351
Delay at unsignalized intersections, 354
Common link performancefunctions, 358

13.2 Estimation of Demand Function
Parameters 360

Curve fitting and least squares, 360
Maximum likelihood, 362
Estimating the parameters of discrete choice

models, 364

X1 - - - llM

xii Contents

Contents xiii

13.3 Estimation of O-D Matrices 367

O-D matrices that reproduce observed
conditions, 368

Choosing the appropriate matrix, 369

13.4 Summary 372

13.5 Annotated References 373

13.6 Problems 374

APPENDIX: NORMAL DISTRIBUTION AND PROBIT
ANALYSIS 377

A.1 Multivariate Normal Distribution 377

A.2 Multinomial Probit Model 379

Approximation method, 379
Simulation method, 381

REFERENCES 382

INDEX 390

__ ___ .____ �_

irP- I -I -� -- - - - L-- I - Il u�

Preface

The flow pattern throughout an urban network can be looked upon as the
result of two competing mechanisms. On the one hand, users of the system
(drivers, passengers, pedestrians) try to travel in a way that minimizes the
disutility associated with transportation. For example, motorists driving be-
tween a given origin and a given destination are likely to choose the route
with the shortest travel time. On the other hand, the disutility associated with
travel is not fixed but rather depends in part on the usage of the transpor-
tation system. Thus, in the previous example, the travel time on each of the
paths connecting the origin and the destination is a function of the total traffic
flow due to congestion. It is therefore not clear a priori which path through
the network has the shortest travel time. Consequently, it may not be obvious
what the flow pattern throughout the network will be under various con-
ditions. This book describes how this flow pattern can be determined for an
urban road network by modeling these two mechanisms (travel decisions and
congestion).

The analytical approach described in this text draws on analogies be-
tween the two mechanisms mentioned here and the interaction of supply and
demand in the marketplace. Instead of analyzing the price of a product and
the quantity consumed, the analysis here looks at transportation level of ser-
vice (or its inverse, travel disutility) and flows. The results of the analysis
include a set of flow and a set of level-of-service measures that are at equilibri-
um with each other.

The book looks at many dimensions of travel choice, including the de-
cision to take a trip, the choice of travel mode, the distribution of trips among
various possible destinations, and the choice of route between an origin and a

xv

_ __

destination. All these decisions, when aggregated and analyzed simultaneously
with the congested effects, result in the flow pattern through the network. The
analysis of all these travel choices is carried out by using a unified framework
that builds on graphical and network representation.

The problem of finding the equilibrium flow pattern over a given urban
transportation network is also known as traffic assignment. The basic solution
methodology is based on formulating the problem as a nonlinear optimization
and solving it as such. This book, however, does not require any prerequisites
in mathematical programming or graph theory. All the necessary background
is reviewed at an introductory level. The level of mathematics assumed in-
cludes college calculus and (in the last parts of the book) introductory prob-
ability concepts. The book uses extensively intuitive arguments and network
structures, which are utilized to illustrate many situations graphically.

This book grew out of a set of course notes used for two courses at
M.I.T., one taken by graduate students and the other by undergraduates.
Currently, the courses (and the notes) are combined, drawing both upper-level
undergraduate and graduate students. The book was designed as a text for the
following classroom environments:

1. A primary text for an intensive one-semester (or two-trimester) course(s).

2. A primary text for a slower one-semester or a one-trimester course
(Chapters 1-6, 7, and/or 8, possibly 9, and parts of 13). Such a course
would cover only deterministic equilibrium methods.

3. A supporting text in an introductory urban transportation planning
course (Chapters 1, 3, 5, 6, and 7 with emphasis on the algorithms).

4. A supporting text in a course on operations research and mathematical
programming techniques, demonstrating the applications of the method-
ology.

The book should also serve practicing transportation engineers and
urban planners as a reference guide on issues of traffic assignment and urban
transportation networks analysis.

Many people have contributed to the development of this book. Warren
Powell of Princeton University and Carlos Daganzo of the University of
California at Berkeley joined me in most of my research in this area. Joel
Horowitz of the University of Iowa and Hani Mahmassani of the University
of Texas at Austin helped in the preparation of the manuscript by commenting
extensively on its early versions. Useful comments were also provided by Brian
Brademeyer, Stella Dafermos, Mark Daskin, Patrick Harker, Haris Koutso-
poulos, Larry LeBlanc, Joffre Swalt, and all the students who took my net-
works course at M.I.T. during the years in which the manuscript was in
preparation. The contributions of Karen and Jonathan are also greatly ap-
preciated.

YOSEF ("YOSSI") SHEFFI

__

xvi Preface

- - -

The amount of travel taking place at a given moment on any street, intersec-
tion, or transit line in an urban area is the result of many individuals' de-
cisions. Travelers choose if and when to take a trip for some purpose, which
mode of transportation to use (e.g., whether to drive or take public transit),
where to go, and which way to get there. These decisions depend, in part, on
how congested the transportation system is and where the congested points
are. Congestion at any point of the transportation system, however, depends
on the amount of travel through that point. This book describes how these
interactions between congestion and travel decisions can be modeled and
solved simultaneously to obtain the flow pattern throughout the urban trans-
portation network.

One of the major problems facing transportation engineers and urban
planners is that of predicting the impact of given transportation scenarios. The
analytical part of this problem can be dealt with in two main stages. First, the
scenario is specified mathematically as a set of inputs that are used to predict
the flow pattern resulting in from such a scenario. Second, the flow pattern is
used to calculate an array of measures that characterize the scenario under
study. The inputs to the analysis typically include a description of the follow-
ing (either existing or projected):

1. The transportation infrastructure and services, including streets, intersec-
tions, and transit lines.

2. The transportation system operating and control policies
3. The demand for travel, including the activity and land-use patterns

2

I

I

Chap. 1 Urban Transportation Networks Analysis

The first stage of the analysis uses these inputs to calculate the flow
through each component of the urban network. Flow is measured in terms of
the number of travel units (vehicles, passengers, pedestrians) that traverse a
given transportation facility in a unit time. This part of the analysis builds on
functional relationships between flows and congestion as well as relationships
between congestion and travel decisions.

The second stage of the analysis involves the calculation of an array of
measures of interest, given the flow pattern. These may include the following:

1. Level of service measures, such as travel time and travel costs. These
affect the users of the transportation system directly.

2. Operating characteristics, such as revenues and profits. These are of
primary concern to the operators of the system.

3. Flow by-products, such as pollution and changes in land values. These
affect the environment in which a transportation system is operated.

4. Welfare measures, such as accessibility and equity. These may indirectly
affect various population groups.

The focus of this book is on the first stage of the analysis, that of
determining the flow pattern, given the inputs. Many of the aforementioned
measures can be calculated from these flows in a straightforward manner.
Others (such as pollution level or equity measures) may require sophisticated
methodologies and complex models which are not within the scope of this
book. These analyses, however, use the flow pattern as a major input. In
addition, a complete analysis of a given scenario may involve important con-
siderations which are not based on the flow, such as construction costs and
political and institutional factors.

The perspective of the modeling approach presented in this text is descrip-
tive rather than normative. In other words, it describes how individuals travel
through an urban transportation system given the components of that system
(which are specified as inputs). It does not attempt to determine the optimal
system configuration (in terms, say, of which project should be built or what
kind of control policies should be utilized). In many cases, however, the analy-
sis is motivated by the need to decide on a given transportation investment,
regulation, or policy from among a set of alternative courses of action. In this
case, each of the alternative scenarios should be specified mathematically as a
set of inputs to the analysis. The models described in this book are then
formulated and solved for each alternative scenario in order to predict the flow
pattern that is used, in turn, to develop many of the measures of interest. The
full set of measures associated with each alternative is then used to compare
their respective impacts. These measures are, typically, also compared to the
set of measures characterizing a base case (which can be the current system or
a projection of how the current system will operate under the "do nothing"
alternative). These comparisons serve as a basis for recommendation regarding
the preferred course of action.

___.____

3

Part I Urban Networks and Equilibrium

This book presents the various assumptions, models, and algorithms
used to calculate the flow pattern from the inputs. The thrust of the book is
the interaction of congestion and travel decisions that result in this flow. Since
congestion increases with flow and trips are discouraged by congestion, this
interaction can be modeled as a process of reaching an equilibrium between
congestion and travel decisions.

The remainder of this chapter introduces and explains the notion of
equilibrium in the context of urban transportation analysis. Section 1.1 pre-
sents this equilibrium in general terms, and contrasts it with the more familiar
economic equilibrium framework. Section 1.2 describes the mathematical rep-
resentation of the urban transportation system as a network. The network
structure is a fundamental characteristic of the equilibrium discussed in this
text. Section 1.3 gives the actual definition of several equilibria between con-
gestion and travel decisions. These equilibria are defined specifically for urban
transportation networks. The section ends with an outline of the text. Finally,
Section 1.4 summarizes the first chapter and Section 1.5 suggests some further
readings.

1.1 EQUILIBRIUM ANALYSIS
OF TRANSPORTATION SYSTEMS

The concept of equilibrium analysis is tied to the systems-oriented view of
urban transportation taken in this text. This section discusses three related
issues that explain this view: (1) the need for the systems-based approach to
the analysis of urban transportation, (2) the general notion of equilibrium and
the various types of equilibria, and (3) the applications of these notions to
transportation systems analysis.

Systems Approach to Urban Transportation

The traditional approach taken in many engineering analyses is to iso-
late a component of a system and analyze this component individually. This
approach is also used in analyzing the effect of small changes in the urban
transportation system. For example, traffic lights are typically timed by con-
sidering only the traffic using the intersection under consideration. The effects
of the change on adjacent intersections are usually assumed to be negligible.
Similarly, parking regulations, intersection designs, and other changes in the
urban transportation system are typically analyzed by considering only the
immediate environment.

If the impact of a particular policy or design is likely to be small, this
type of analysis may be sufficient. When the change being analyzed is more
substantial, however, it will affect not only the component that is being
changed but other parts of the system as well. As an illustration of this type of
ripple effect, consider a congested segment of an urban arterial. In order to

4

Chap. 1 Urban Transportation Networks Analysis

reduce congestion, the local transportation authority considers the costs' and
benefits of widening this segment of road. Given the existing traffic flow, .the
addition of one lane is judged to be sufficient, since the added lane will mean
that the existing traffic will be able to flow smoothly and with only minor
delays. The project benefits calculated in this manner may, however, be mis-
leading since travel decisions were not taken into account. For example, it is
likely that motorists who did not use the arterial segment before, will subse-
quently make use of the improved facility. Thus the traffic conditions on the
widened facility will not be as good as anticipated due to the increased flow,
which will cause increased congestion. In turn, some of the roads leading into
the improved facility may get congested as motorists try to access and exit
from the widened segment. In addition, the flow conditions on roads parallel
to the widened facility may improve as a result of these shifts since the traffic
flow on them may decrease. Drivers on other parts of the system may then
realize a change in their flow conditions and alter their route accordingly.
Each route change will lead to further changes in congestion levels and conse-
quently more route changes. Ultimately, however, these ripple effects will
lessen and, after a short while (several days or a few weeks), the system will
stabilize at a new equilibrium point with no more significant changes occurring.

The preceding example illustrated the flow changes resulting from a
change to the transportation infrastructure. Similar changes may occur if
transportation control policies are changed or if new transporation services
are introduced. Furthermore, new flow patterns may result from changes not
directly tied to the transportation system but rather changes in the general
activities in the urban area. These activities create the need and the demand
for transportation. For example, consider the opening of a new shopping
center. The center attracts shopping trips which are partially new (generated
by people who now shop more frequently) and partially diverted from other
destinations. The streets leading to the new center will get congested, causing
some travelers who are only passing through the area to change route, mode
of travel, or the timing of their trips. These diversions will change the flow and
congestion throughout the system, causing further changes in travel decisions.
Other changes will occur around other shopping centers, which may experi-
ence some decline in the level of flow. Again, after a while the flows will reach
a new equilibrium point. At this point, the frequency of trips, the trip destina-
tions, the modes of travel, and the chosen routes are stable throughout the
transportation network.

The notion of equilibrium in this context parallels the physical notion of
stable equilibrium, which is the state in which there are no (net) forces that try
to push the system to some other state. Furthermore, when the system is in
disequilibrium, there are forces that tend to direct the system toward the
equilibrium state. In the case under consideration, the flows are being
"pushed" toward equilibrium by the route-switching mechanism. At equilibri-
um, the flows will be such that there is no incentive for route switching. It is
this state of equilibrium that is the focus of this text.

5

Part I Urban Networks and Equilibrium

As the examples above indicate, the equilibrium flow pattern associated
with a given scenario may involve unanticipated flow levels and congestion in
various parts of the urban network. This bears directly on the question of who
is affected under this scenario. Whereas some travelers will be better off, others
may be worse off. A consideration of the entire system is therefore neccessary
in order to account for the wide spectrum of effects associated with a particu-
lar scenario. In other words, the equilibrium flow pattern that would prevail
under each scenario can be found only by analyzing simultaneously all ele-
ments of the urban transportation network.

The next section explains the equilibrium concept in several contexts,
leading to the role of such analysis in the study of urban transportation
systems.

Equilibrium in Markets

The classical view of a (perfectly competitive) economic market for a
certain good includes two interacting groups: the producers and the con-
sumers. The behavior of the producers is characterized by a supply function
and the behavior of the consumers is characterized by a demand function. The
supply function expresses the amount of goods that the suppliers produce as a
function of the price of the product. As the price increases, it becomes profit-
able to produce more and the quantity supplied increases. The demand func-
tion describes the aggregate behavior of consumers by relating the amount of
the product consumed to its price. As the price increases, the amount con-
sumed decreases.

Figure 1.1 depicts simple demand and supply functions for a certain
product. The point where the two curves intersect is characterized by the
"market clearing" price, P*, and quantity produced, Q*. This is the point
where the price of the product is just right, so that the entire quantity pro-
duced is consumed. If the price is higher than P*, production will be higher
than consumption, as shown in Figure 1.lb. Such an imbalance cannot be
sustained, since not all of the product sells and inventories will grow indefi-
nitely. Prices will eventually fall and consumption will increase accordingly. If
the price is lower than P*, the quantity demanded is higher than the pro-
duction. Such a situation is again unstable since producers will try to increase
prices in order to capture the consumers' willingness to pay more. Such price
increases will lead to higher production and lower demand. Thus, if the prices
are either lower or higher than P*, market forces will tend to push the price
toward its "market clearing" level. At this point the price will be stable and
thus the point (P*, Q*) is known as the equilibrium point.

The monetary price of a product is not always the only determinant of
the quantity consumed. Products can be characterized by many attributes that
influence consumption. Furthermore, some of these characteristics are not
constant but rather a function of the quantity consumed.

Consider, for example, the demand for gasoline at a certain gas station.

6

Chap. 1 Urban Transportation Networks Analysis

Q
quantity

Q*

)ply
iction (Cl)

mand
iction

P
price

Qu
quantity

quantity
produced

quantity
consumed

Supply
Function ([b)

I Demand
Function

I

price P
price

Q A
quantity

quantity
consumed

quantity
produced

Supply [c)
:unction

)emand
unction

price p
price

Figure 1.1 Demand/supply equilibrium: (a) market-clearing quantity and price; (b)
price too high; (c) price too low.

The lower the price of gasoline at this station, the larger the number of
motorists who would want to purchase gasoline there. As the number of
customers grows, a queue appears and customers have to wait in line. At this
point, the number of additional customers is influenced by two elements: price
and waiting time. The station operator can set only the price. For a given
price, the volume of sales will be determined by two factors: the waiting time,
which is influenced by the number of customers in the queue, and the willing-
ness of customers to wait, which determines the demand for gasoline at the
station.

For a given gasoline price,t then, the situation can be characterized by
two functions. The first is a demand function that relates the customers' arrival

tAssuming also that the price and waiting time in all other stations in the area is fixed and
known.

----- -- _

7

Part I Urban Networks and Equilibrium

rate to the delay (in other words, it gives the number of customers entering the
station per unit time as a function of the waiting time). The second function
relates the waiting time to the arrival rate of customers. This second function,
unlike a supply function, does not capture the behavior of any economic agent.
Instead, it depicts merely a physical phenomenon, which in this case is the
delay associated with queueing. This function is termed a performance function.
Unlike the supply and demand functions, the performance function does not
have the price or any other service characteristic as its argument, and it does
not give the quantity consumed or produced. Instead, its argument is the
quantity consumed (or the arrival rate in the case of the example considered
here) and it gives the service characteristic (which is the delay in this case).

Figure 1.2a depicts a hypothetical performance curve showing how the

l0
0

0

t

ti

nance

[a)
mand

X

Arrival Rate

(b)

X
X1 X2 Arrival Rate

t

a
0,
0 (C])

X
X X X " Arrival Rate

Figure 1.2 Demand/performance equilibrium for the gas station example: (a) equi-
librium arrival rate and waiting time; (b) a waiting time that is too low; (c) a shifted
demand curve (higher price) and a shifted performance curve (higher service rate).

8

Chap. 1 Urban Transportation Networks Analysis

delay, t, increases with the arrival rate, x. The figure also depicts a demand
curve which shows the arrival rate associated with any given delay (this curve
should be read by entering the vertical axis). When the arrival rate is low,
there will be little queueing and the delay will be low, attracting more cus-
tomers. When the arrival rate is very high, the delays are very high and no
customers will join the queue. The only stable situation will be when the
arrival rate is such that it creates a delay that corresponds to the same arrival
rate. This equilibrium point is denoted by (x*, t*) in Figure 1.2a. Figure 1.2b
shows a situation in which the arrival rate, x1, is too low (i.e., xl < x*). The
delay associated with this arrival rate is t, in accordance with the per-
formance function. This delay, however, generates an arrival rate of x2 (where
x2 > x*), in accordance with the demand function. As the arrival rate in-
creases, the delay increases toward the equilibrium point where the delay
matches the arrival rate.

Note that the demand function given in Figure 1.2 holds only when
everything else (price, number of pumps, delay and price at other stations, etc.)
is fixed. Since the demand is a function of both price and delay, a change in the
price would show as a different demand function in the arrival rate/delay
space. The demand curve associated with a higher price is depicted by the
dashed line in Figure 1.2c. The equilibrium quantity here, x', will be lower
than x*, as expected. The dotted line in Figure 1.2c depicts a performance
function associated with more pumps operating. In this case the delay associ-
ated with each arrival rate is smaller and the equilibrium quantity, x", will be
higher than x*, again as expected.

The economics of the gas station operation can still be analyzed in the
framework of supply/demand equilibrium. In this case the demand function
gives the quantity consumed (or the customers' arrival rate) as a function of
both price and delay. A supply function will give the price charged by the
operator as a function of the quantity consumed. This supply/demand equilib-
rium, however, cannot be solved in isolation since the delay depends on the
arrival rate. The latter relationships are given by a performance function. A
complete economic analysis utilizes all three functions to solve, simultaneous-
ly, for the arrival rate, the delay, and the price. The demand/performance
analysis given in the preceding paragraphs assumed that the price is fixed and
known.

This example should clarify the differences between a supply/demand
and performance/demand equilibrium. In a sense, the performance/demand
analysis is a special case of the supply/demand equilibrium. It is obtained by
fixing some of the variables in the supply/demand equilibrium problem.

The Transportation Arena

Transportation is a service that the transportation industry (including
road builders, vehicle manufacturers, transit operators, traffic managers, etc.)
offers travelers. As in many other service industries, the transportation prod-

__..__· -

9

Part I Urban Networks and Equilibrium

ucts can be characterized by the level of service offered in addition to the price
charged. Transportation level of service can be measured in terms of travel
time, schedule convenience, reliability, safety, comfort, spatial coverage, ac-
cessibility to the service, and many other factors.

Many of the components of transportation level of service are not fixed
but rather are flow dependent, in that their value depends on the usage of the
transportation system. Consider, for example, a transit line connecting two
points in an urban area. If many individuals choose to use this line, the buses
will get congested, the waiting time will increase, the probability of obtaining a
seat will be lower, and the driver is less likely to be friendly. The level of
service, then, will be lower with increased patronage even if the fare remains
fixed. In response, some patrons may drive instead of taking transit, others
may change the timing of the trips, and yet others may forgo the trip altoge-
ther. This situation can be analyzed by using two functions: (1) a performance
function that describes how the level of service deteriorates with increasing
volume; and (2) a demand function that describes how the volume of passen-
gers increases with improved level of service. These functions are defined for a
given situation in terms of fare structure, schedule, equipment, and so on. As
was the case with the aforementioned gas station example, the framework for a
performance/demand equilibrium analysis is set by fixing those service charac-
teristics that are under the operator's control. In the case of the gas station,
this includes only the price. In the case of a transit line, these characteristics
include a range of variables.

The dependence of the level of service on the flow is a fundamental
characteristic of the transportation market. In the context of urban transpor-
tation, performance functions are rooted in the congestion phenomenon,
which causes increased delays and costs with increased flow. The focus of this
book is on the calculation of the demand/performance equilibrium in the
urban passenger transportation market. The notion of equilibrium in the re-
mainder of this book refers solely to this type of equilibrium.

The equilibrium in the urban transportation market is necessarily
reached over the urban network of streets and transit lines. To define the
notion of equilibrium over a transportation network, the network concept has
to be presented and discussed. That is the topic of the next section.

1.2 NETWORK REPRESENTATION

The term "network" is commonly used to describe a structure that can be
either physical (e.g., streets and intersections or telephone lines and exchanges,
etc.) or conceptual (e.g., information lines and people, affiliation relationships
and television stations, etc.). Each of these networks includes two types of
elements: a set of points and a set of line segments connecting these points.
This observation leads to the mathematical definition of a network as a set of
nodes (or vertices or points) and a set of links (or arcs or edges) connecting

T

10

Chap. 1 Urban Transportation Networks Analysis

Figure 13 Directed network of links
and nodes.

these nodes.t Figure 1.3 depicts a network including five nodes connected by
10 links. Each link in this network is associated with a direction of flow. For
example, link 5 represents flow from node 3 to node 2, while link 6 represents
the reverse flow, 2-- 3. This text deals exclusively with directed networks (in
which all links are directed).

Each network link is typically associated with some impedance that
affects the flow using it.: The units of measurement of this impedance depend
on the nature of the network and the link flows. Impedance can represent
electrical resistance, time, costs, utility, or any other relevant measure. When
the flow involves people, the term "level of service" is usually used instead of
"impedance." (The magnitudes of these terms are the opposite of each other;
that is, a high level of service means low impedance.) Only links can be
associated with impedance. Nodes represent merely the intersection of links
and are not associated with any impedance to flow.

The networks discussed in this text are typically "connected." In other
words, it is possible to get from any node to any other node by following a
path (or a route) through the network. A path is a sequence of directed links
leading from one node to another. The impedance along a path is the sum of
the impedances along the links comprising that path. Note that a pair of nodes
is usually connected by more than one path. For example, to get from node 2
in Figure 1.3 to node 4, the following paths (designated by the link numbers
along the path) can be used: 9; 6, 7; 6, 3, 4; 1, 2, 7; 1, 4. In large networks, the
number of paths connecting each pair of nodes can be extremely large.

Representation of the Urban Road Network

The focus of this text is on urban transportation. The roadway network
in an urban area includes intersections and streets through which traffic
moves. These elements can be translated naturally into a structure of nodes
and links (including impedance measures), respectively. For a measure to

tThe term "network" is used, then, to represent both a physical structure and its math-
ematical representation (known also as a graph).

$Formally, the difference between a network and a graph is that network links are associ-
ated with impedance, whereas the links of a graph are not (they only represent connection and/or
direction).

- - -- - -

11

Part I Urban Networks and Equilibrium

N

i I:II II
I I

.- ,.... -.. ~ ~---.. _7-- ---
LW ', "I" E

_w __ ____________-=4, =1

1 11

I II I IFos
l l lI Figure 1.4 Four-approaches intersection

S layout.

properly represent link impedance it has to be a deterrent to flow. A particu-
larly relevant measure for links representing urban streets is the time required
to traverse the street. This impedance measure is discussed in detail in the last
part of this section.

The graph representation of a physical network is not unique. In other
words, there are many networks that can be used to represent the same physi-
cal structure. Consider, for example, the intersection shown in Figure 1.4. This
intersection can be represented simply as a node with the streets leading to
and from it represented by links connected to that node, as shown in Figure
1.5a. Note that a two-way street is represented by two opposite-direction links.
The impedance on the links entering the intersection (the approaches) repre-
sents the intersection delay as well as the travel time along the approaching
street. The impedance on the outbound links represents the travel time on the
streets in that direction and the delay at downstream intersections.

The drawbacks of this representation are twofold. First, it cannot be

[a)

*b)

Figure 1.5 Network representation of the intersection in Figure 1.4: (a) repre-
senting the intersection as a node; (b) a detailed intersection representation.

-

-

I __ __ I

12

I

-
I

Chap. 1 Urban Transportation Networks Analysis

used to represent turning restrictions. Second, it assumes that all flow entering
the intersection from a particular direction will experience the same travel
time, regardless of where it is destined. Clearly, right turns are easier to execute
than straight-through movements, which, in turn, are easier to execute than
left turns. These different delays can be accounted for by a more elaborate
representation of the same intersection, shown in Figure 1.5b. In this figure the
single node representation of the intersection is replaced by a network of four
nodes and 10 links. Each permissible movement through the intersection is
represented by a separate link. (Note that the graph is not completely sym-
metric due to the lack of left-turning movements from the northern and south-
ern intersection approaches.) In this representation, each intersection move-
ment can be associated with the appropriate delay. Link 3 -+4, for example,
will be associated with left-turning delay that would be experienced by the
traffic turning from the eastern approach into the southern one. Link 3 - 1, on
the other hand, will represent right-turning maneuvers for flow from the east
to the north, with the appropriate delay. In such a representation the links
leading into the intersection will be associated only with the travel time on the
incoming approaches, not with the intersection delay itself. The intersection
delay is captured by the links connecting the four nodes in the figure.

Representation of the Transit Network

The movement of vehicular traffic through streets and intersections is
not the only flow in the urban area; this text looks at the flow of transit
passengers as well. A transit link can be represented by a simple linear net-
work in which the transit stations (or bus stops) are represented by nodes and
the line-haul portion by links. Such a graph is shown in Figure 1.6a. The
impedance on each of the links in this network includes "in-vehicle" travel
disutility elements such as travel time. Other measures that are not associated
with the travel in the transit vehicle, however, serve also as travel impedance.
These include, for example, the waiting time at the station and the fare
charged. Furthermore, the transit station may be located away from the actual
destination, requiring a walking trip from the point of alighting to the destina-
tion node. Figure 1.6b depicts the transit network associated with the flow
between a particular origin node to a particular destination node. The loading
link, in this figure, corresponds to the waiting time and fare, while the unload-
ing link corresponds to the walking time. Note that in order for the various
types of links to be compatible with each other, the impedance on all of the
network links has to be expressed in the same units. If this were not the case,
the impedance of a path could not be calculated.

A representation of a complete transit network would include not only
loading and unloading links but also transfer links. The impedance on such
links would be associated with line transfer charges (which may be lower than
the fare at the start of the trip) and the waiting time at the transfer point.
Figure 1.6c depicts a network representation of a transit station serving two

____ �_�_��_��_

13

Part I Urban Networks and Equilibrium

Station

< ; 7 0 0 -~ ~~[a)
Line - haul Links

(b)

Transit Line Unloading
Loading

Link Link

Origin Destination
Node Node

(C)

Figure 1.6 Transit-line representation:
(a) a representation including only the
"in-vehicle" movement; (b) a repre-
sentation including boarding and alight-
ing movements; (c) a detailed repre-
sentation of a transit station, including
transfer. boardine. and aliehting links.

lines (west--, east and south-, north). The station itself is represented by the
four nodes 1, 2, 3, and 4. Links 3-- 1 and 2 - 4 represent the continuation of a
trip on the same line and are therefore associated with zero impedance. (Note
that all four nodes represent the same physical facility.) Links 3 - 4 and 2 1
represent the transfer movements between the two lines. The impedance on
these links include the transfer costs and delays expressed in appropriate units.
Node 5 represents both a source for trips (i.e., it is an origin node) and a
terminus for trips (i.e., it is also a destination node). This node is connected to
both transit lines by loading and unloading links (shown as dashed lines in
Figure 1.6c). It represents a set of trip origins and trip destinations which are
located in the vicinity of the transfer station.

Centroids and Connectors

The transportation planning process for urban areas is typically based
on a partition of the area into traffic zones. The size of each traffic zone can
vary from a city block to a whole neighborhood or a town within the urban
area. The number of traffic zones can vary from several dozens to several
thousands. Each traffic zone is represented by a node known as centroid (the
name stems from the practice of placing the node at the geometrical center of

_ _I � _��.I_.�. �--- _� _____ �

14

Chap. Urban Transportation Networks Analysis

gravity of the traffic zone). The network representation of the urban area will
include many other nodes, representing intersections, bus stops, and other
transportation facilities. The centroids, however, are those "source" and
"sink" nodes where traffic originates and to which traffic is destined. (Node 5
in Figure 1.6c is a centroid.) Once the set of centroids is defined, the desired
movements over an urban network can be expressed in terms of an origin-
destination matrix. This matrix specifies the flow between every origin centroid
and every destination centroid in the network.

Figure 1.7 shows a traffic zone that is surrounded by four two-way
streets. The node in the middle of the zone is the centroid. It is connected to
the roadway network by special centroid connector links (known also as "con-
nectors" or "dummy links"). The centroid shown in the figure is a trip origin
and therefore all the connectors are directed away from the centroid and into
the nodes of the road network. Connectors directed toward the centroid would
be added if trips can also terminate there.

Each centroid represents an aggregation of all the actual origins and all
the actual destinations in its traffic zone. The centroid connectors represent the
ubiquitous street network within a traffic zone. If the actual origin and desti-
nation points are uniformly distributed in the traffic zone, the connectors can
be associated with the travel time between the geometrical centroid of each
zone and the appropriate nodes. If the distribution of origin and destination
points is not uniform, the connector travel times should be weighed accord-
ingly.

The centroids can be connected directly to nodes that are part of the
transit network. In this case, the connectors represent loading and unloading
links, as shown in Figure 1.6c. The impedance on the loading centroid connec-
tor represents the walking time to the station, waiting at the station, and the
transit fare. The impedance on the unloading connectors would represent the
walking time from the transit station to the centroids.

The level of detail at which an urban area is represented is determined in
large part by the size of the traffic zones. The analysis of the flows in the urban
area does not focus on the flows within each traffic zone; the centroid and
centroid connectors representation has to ensure only that the flows between
the traffic zones are correct. If the flows within a certain zone are of interest to
the transportation analyst, the zone under consideration should be divided

Links

Figure 1.7 Network representation of a
traffic zone, including a centroid node
and centroid connector links. Connectors

__ __._ _. __.__ · _.__ _

15

Part I Urban Networks and Equilibrium

into smaller zones and the road network between these zones modeled ex-
plicitly. Such detailed analysis is likely to be more accurate. Costs, however
(including both direct analysis costs and data collection costs), escalate dra-
matically as the number of traffic zones and the size of the network increase.
The size of the network to be analyzed is typically determined by this trade-off
between the required accuracy and the available budget.

Similar considerations apply to the level of detail in which the road
network itself is represented. Although it is important to show all the major
streets and arterials, smaller streets may not have to be represented at all. The
issue of network representation is as much an art as it is a science; practice
and experience are required to carry it out successfully.

Link Performance Functions

The travel impedance, or level of service, associated with the links repre-
senting an urban network can include many components, reflecting travel
time, safety, cost of travel, stability of flow, and others. The primary compo-
nent of this impedance, however, is travel time, which is often used as the sole
measure of link impedance. The reasons for using travel time in this context
are threefold. First, empirical studies seem to indicate that it is a primary
deterrent for flow. Second, almost all other possible measures of travel im-
pedance are highly correlated with travel time and thus exhibit the same
trends. Third, it is easier to measure than many of the other possible im-
pedance components. Generalized impedance, which combines several mea-
sures, can, however, be used and in the remainder of this book, the term
"travel time" can be understood as such a combined impedance. Furthermore,
impedance measures other than travel times can be used explicitly in some
parts of an urban network. For example, the appropriate impedance measure
for links in the transit network are transit (in vehicle) time, waiting time, fare,
and so on. To be compatible with the impedance over the vehicular traffic-
carrying links of an urban network, these impedance measures should all be
expressed in travel-time units.t

As mentioned in Section 1.1, the level of service (or impedance) offered
by many transportation systems is a function of the usage of these systems.
Because of congestion, travel time on urban streets and intersections is an
increasing function of flow. Consequently, a performancefunction rather than a
constant travel-time measure should be associated with each of the links repre-
senting the urban network. The performance function relates the travel time
(which, as mentioned above, may stand for generalized impedance) on each
link to the flow traversing this link.

A performance function for a typical approach to a signalized intersec-
tion is shown in Figure 1.8. This function captures both the time spent in

tThe conversion coefficient should be rooted in travelers' values. The estimation of such
coefficients is discussed in Chapter 13.

_ I ____ _II __ I _ �I __�

16

Chap. 1 Urban Transportation Networks Analysis

.

E

uI

U.'

I-

z

free flow
travel time

capacity

LINK FLOW [veh/hr]

Figure 1.8 Typical link performance function for an approach to a signalized
intersection.

traveling along the approach under consideration and the delay at the down-
stream intersection. The shape of the curve shown in the figure is typical of
performance functions for links representing urban network components.

The travel time at zero flow is known as the free-flow travel time. At this
point, a traveling car would not be delayed because of interaction with any
other car moving along the link. The only source of delay at this point is the
time associated with traversing the link and the expected delay associated with
the probability of being stopped by a red signal indication. As the flow in-
creases, the travel time monotonically increases since both the travel time
along the approach increases (because of vehicle interactions at higher traffic
densities) and the intersection delay increases (because of queueing phenome-
na) with the flow. Characteristically, the performance function is asymptotic to
a certain level of flow known as the capacity of the transportation facility
under consideration. The capacity is the maximum flow that can go through
any transportation facility. The performance function is undefined for higher
values of flow, since such flows cannot be observed. When the flow approaches
capacity, the queues at the intersection will start growing, clogging upstream
intersections and finally causing traffic to come to a halt.

The general shape of the performance functions is similar for links repre-
senting most types of urban streets. The physical characteristics of each street
(e.g., length, width, parking restrictions, turning pockets, or signal green time)
determine the exact parameters of the function for each street.

The centroid connectors are typically modeled as fixed travel-time links.
In other words, the travel time on the connectors does not vary with the flow
since these links represent a ubiquitous local street network and not a particu-

· __· _ _____·

17

Part I Urban Networks and Equilibrium

lar facility. Similarly, loading and unloading links represent time and cost
components that do not vary with the flow.

It is important to remember that the physical network and its graph
representation do not have to be similar. As shown in later chapters, links can
be used to represent many types of flow, some of which do not correspond to
physical movements. For example, in Chapter 6 the individuals who choose
not to travel at all are represented as a flow on an imaginary link added to the
network. It is always true, however, that each link represents a distinct flow.

The next section discusses equilibrium over urban transportation net-
works, building on the system analytic approach and the equilibrium frame-
work introduced in Section 1.1.

1.3 EQUILIBRIUM
OVER URBAN TRANSPORTATION NETWORKS

The notion of equilibrium in the analysis of urban transportation networks
stems from the dependence of the link travel times on the link flows. Assume
that the number of motorists who wish to travel between a given origin point
and a given destination point is known. Furthermore, assume that these points
are connected by several possible paths. The question of interest here is how
these motorists will be distributed among the possible paths. If all of them
were to take the same path (which may initially be the shortest one in terms of
travel time), congestion would develop on it. As a result, the travel time on this
path might increase to a point where it is no longer the minimum travel-time
path. Some of these motorists would then use an alternative path. The alter-
native path can, however, also be congested, and so on.

The determination of the flows on each of these paths involves a solution
of a demand/performance equilibrium problem. The flow on each link is the
sum of the flows on many paths between many origins and destinations. A
performance function is defined independently for each link, relating its travel
time to this flow. The demand for travel, however, is rooted in motorists'
behavior and is not defined for each link separately. Instead, it specifies how
motorists choose among the alternative paths (routes) connecting each origin-
destination (O-D) pair. This dichotomy in the definition of the performance
and the demand functions gives this performance/demand equilibrium analysis
its "systems" nature. In other words, this is why no link, path, or origin-
destination pair can be analyzed in isolation.

This section discusses the route choice rule and the associated definitions
of equilibrium used in this text.

Definitions of Equilibria

This text analyzes a variety of urban network equilibrium problems,
including both the transit and automobile mode and encompassing several
possible travel decisions. The basic problem, however, is presented here for a

_ __ _�___ ____ I__ ___I___

18

Chap. 1 Urban Transportation Networks Analysis

simplified case, including a network representing only the automobile flows.
The only travel choice examined here is the motorists' choice of routes be-
tween their origin and their destination. This problem can be put as follows:

Given:

1. A graph representation of the urban transportation network
2. The associated link performance functions
3. An origin-destination matrix

Find the flow (and travel time) on tach of the network links.

This problem is known as that of traffic assignment since the issue is how to
assign the O-D matrix onto the network. The resulting link flows are then
used to calculate an array of measures, which can be used, in turn, to evaluate
the network. Particular designs of transportation infrastructure or transpor-
tation control policies usually enter the analysis through the specification of
the network itself and the performance functions.

To solve the traffic assignment problem, it is required that the rule by
which motorists choose a route be specified. As explained above, this rule can
be viewed as the function or the procedure that specifies the demand for travel
over paths. The interaction between the routes chosen between all O-D pairs,
on the one hand, and the performance functions on all the network links, on
the other, determines the equilibrium flows and corresponding travel times
throughout the network.

It is reasonable to assume that every motorist will try to minimize his or
her own travel time when traveling from origin to destination. As explained
above, this does not mean that all travelers between each origin and destina-
tion pair should be assigned to a single path. The travel time on each link
changes with the flow and therefore, the travel time on several of the network
paths changes as the link flows change. A stable condition is reached only
when no traveler can improve his travel time by unilaterally changing routes.
This is the characterization of the user-equilibrium (UE) condition.

Since individual motorists can be expected to behave independently, the
UE situation ensures that at this point there is no force that tends to move the
flows out of the equilibrium situation. Consequently, this point will be stable
and, in fact, a true equilibrium.

The user-equilibrium condition, however, is not the only possible defini-
tion of equilibrium. The assumption that each motorist chooses the minimum-
travel-time route may be reasonable in some cases, but it includes several
presumptions that cannot always be assumed to hold even approximately. For
example, the UE definition implies that motorists have full information (i.e.,
they know the travel time on every possible route) and that they consistently
make the correct decisions regarding route choice. Furthermore, it assumes
that all individuals are identical in their behavior. These presumptions can be

___._· ___

19

Part I Urban Networks and Equilibrium

relaxed by making a distinction between the travel time that individuals per-
ceive and the actual travel time. The perceived travel time can then be looked
upon as a random variable distributed across the population of drivers. In
other words, each motorist may perceive a different travel time, over the same
link. Equilibrium will be reached when no traveler believes that his travel time
can be improved by unilaterally changing routes. This definition characterizes
the stochastic-user-equilibrium (SUE) condition.

The stochastic user equilibrium is a generalization of the user-
equilibrium definition. If the perceived travel times are assumed to be entirely
accurate, all motorists would perceive the same travel time and the stochastic
user equilibrium will be identical to the (deterministic) user equilibrium. In
other words, the flow patterns resulting from both models would be identical.

The definitions of equilibria given above are not easy to use in an oper-
ational manner to solve for equilibrium flow patterns. To be useful, the equi-
librium definitions have to be characterized and formulated mathematically.
The following section discusses the user equilibrium, while the more general
stochastic user equilibrium is treated only in Part IV.

An important point, however, should be mentioned here with regard to
both types of equilibria. The demand for urban travel is derived from the
pattern of activity in the urban area. The timing and locations of these activi-
ties mean that travel demand is not uniform throughout the day. Steady-state
equilibrium analyses of the type discussed here, however, are applicable only if
the flows can be considered stable over the period of analysis. Consequently,
transportation planners analyze urban transportation systems for certain time
periods such as the "morning peak," "evening peak," or "midday," depending
on the purpose of the analysis. The origin-destination flows within each of
these respective periods is considered constant in order for steady-state analy-
ses to apply. The larger the period of analysis, the less accurate this assump-
tion is. The period of analysis cannot be very small, however, since each such
period has to be appreciably longer than the typical duration of trips at this
time.

A Simple User-Equilibrium Example

Consider the two-link network shown in Figure 1.9a. This network rep-
resents one origin-destination pair connected by two alternative routes. Let t1

and t2 represent the travel time on links 1 and 2, respectively, and let x1 and
x2 represent the traffic flow on these links. The total origin-destination flow is
designated by q, where

q = x, + x2 [1.1]

The performance functions on these links t(x,) and t2 (x2) are shown in Figure
1.9b. For each link, the performance function gives the travel time on that link
as a function of the flow on the link.

Assume now that the trip rate between O and D is very small. In other

1 ___�_ � _ � ___ _ _ __ _���_ ___

20

Chap. 1 Urban Transportation Networks Analysis

Link 1

6 3 Dnk 2 (a

t

Figure 1.9 Equilibrium in a simple net-
work: (a) a two-link network; (b) the two
performance functions-if the flow is less
than q' = x, + x 2 , it is assigned to link 1;
(c) the travel time on both links is equal if

[b)

[C

the flow is higher than q'. X2 X l X

words, q is very small. If all motorists are trying to minimize their own travel
time, each of the q motorists should choose to travel over link 1. As shown in
the figure, this link is associated with a lower free-flow travel time than link 2.
If q is small, the increased delay due to the traffic on link 1 is not sufficient to
increase the travel time on this link even to the point where it is equal to the
free-flow travel time on link 2. Thus, all q motorists will use link 1 and no one
will use link 2. This is an equilibrium situation since none of the motorists
using link 1 has an incentive to switch routes to the longer link. Such an
equilibrium will hold as long as q < q', where q' is the flow that causes the
travel time on link 1 to equal the free-flow travel time on link 2. At this point,
an additional motorist may choose either link. If the additional motorist
chooses link 2, the travel time on it will increase and the next motorist will
choose link 1. If on the other hand, the first motorist (above q') chooses link 1,
the next one will choose link 2.

Looking at the flow of traffic as a continuous flow, it is clear that beyond

_ __ __ -

-

21

Part I Urban Networks and Equilibrium

the point q = q', equilibrium can be maintained only if the travel time on both
links is equal. Beyond this point both links are used, and if the travel times are
not equal, some motorists can change route and lower their own travel time.
The route-switching process will not occur only if the travel time on both
routes is equal, giving motorists no incentive to switch.

The two characterizations of equilibrium that can occur in this two-link
example (the first for q < q' and the second for q > q') give rise to an oper-
ational definition of user equilibrium over transportation networks:

UE Definition. For each O-D pair, at user equilibrium, the travel time
on all used paths is equal, and (also) less than or equal to the travel time that
would be experienced by a single vehicle on any unused path.

This definition means that at equilibrium, the paths connecting each
O-D pair can be divided into two groups. The first group includes paths that
carry flow. The travel time on all these paths will be the same. The other
group includes paths that do not carry any flow. The travel time on each of
these paths will be at least as large as the travel time on the paths in the first
group.

Using this definition, the two-link example in Figure 1.9 can now be
solved for any value of q. The assignment of any amount of flow that is less
than q' is obvious-it should all be assigned to link 1. The only problem is to
ensure that the traffic assignment is such that beyond the point of q = q', both
links are assigned at a rate that keeps the travel time on these links equal. If
the equilibrium travel time, t, between the origin and the destination is known
(for the case in which q > q'), the equilibrium definition above means that
t = t = t2 . Consequently, the appropriate link flows can be determined by the
inverse link performance functions [i.e., x, = t(t) and x2 = t 1(t)]. Graphi-
cally, this determination can be accomplished by entering the link performance
curves horizontally, given t, as shown in Figure 1.9c. This method is applicable
at any value of t, even those associated with q < q'. The problem then is to
determine t.

The equilibrium travel time can be determined by creating a new "per-
formance curve" which depicts the O-D travel time as a function of the O-D
flow. This curve can be constructed by summing up the link performance
function horizontally, as shown in Figure 1.10. The curve t(q) in this figure is
an O-D performance function giving the equilibrium O-D travel time as a
function of the total O-D flow. The construction of the O-D performance
function in this fashion ensures that for each value of the travel time, the O-D
flow is the sum of the flows on the individual links. Once this curve is con-
structed, the equilibrium travel time can be determined by simply entering this
function with the O-D flow. Given the equilibrium travel times, the flows on
the individual links can be determined graphically, as shown in the figure.
Note that the O-D performance function coincides with link 1 performance
function for q < q'. This means that for q < q' the equilibrium travel time will

_ _�_____ I� ��� _ __ ______ �_ _ __I__ _ _�__� __ _II

22

Chap. 1 Urban Transportation Networks Analysis

I

.-

I-

x2 X, q q

FLOW

Figure 1.10 The O-D performance function, t(q), is used to find the O-D travel
time, t and equilibrium flows, xi and x 2 .

be given by the travel time on link 1. The travel time on link 2 will be higher
for this range of O-D flow, as required by the user equilibrium definition.

The graphical method used to solve this small two-link network example
cannot be used to solve large networks. In such networks, the number of paths
connecting each O-D pair may be so large that it will be prohibitively expen-
sive to enumerate them all, even by using modern computers. Furthermore,
the flow traversing each link results from the assignment of trips between
many origins and many destinations. Consequently, as mentioned before, the
entire network has to be solved simultaneously.

Outline

The methods used to determine the equilibrium flows and travel times
described in this book are based on nonlinear optimization techniques. Part II
includes a review of the mathematical background needed for such analysis. At
the same time, it presents an application of these methods to the formulation
and solution of user equilibrium problems over large networks.

Part III extends the basic user-equilibrium framework in two main di-
mensions. First, it includes travel choices other than route choice in the analy-
sis. These include the choice of mode of travel, trip destination, and trip
frequency. Second, it applies the analysis to cases in which the performance of
each link depends on the flows on several (and possibly all) of the network
links.

Part IV extends the analysis in yet another dimension by removing a
number of the simplifying assumptions leading to the definition of the user
equilibrium. This part of the book discusses the concept of stochastic user
equilibrium, which was mentioned earlier. It looks at the process of route
choice in the context of random utility theory, applying appropriate choice
models to this process.

The last part of the book (Part V) focuses on the data needed for equilib-
rium analysis of urban transportation systems. It explains how O-D matrices

_ _ _ �__ _ _ _

23

1.

Part I Urban Networks and Equilibrium

can be derived and presents the necessary background in traffic engineering
needed for the derivation of link performance functions.

1.4 SUMMARY

The problem addressed in this book is that of describing the distribution of
traffic and transit passenger flows through an urban transportation network.
The characteristics of the network, in terms of physical dimensions, control
strategies, and operations are assumed to be fixed during the analysis period.
Similarly, the pattern of activities that generates the trips in the urban area is
assumed to be constant. The analysis offered is therefore descriptive in nature.
It should be used for studying various scenarios, each corresponding to a
possible state of any one (or a combination of) the aforementioned constant
characteristics.

The approach used to solve this problem is based on the notion of
equilibrium. Unlike economic equilibrium between supply and demand, the
equilibrium discussed here is between performance and demand. Instead of
being determined in the quantity/price space, the equilibrium under consider-
ation is being determined in the flow/level of service (or flow/impedance)
space. The flow in this case is expressed in terms of the number of travelers (or
vehicles) using each component of the transportation network per unit time,
while the level of service is expressed in terms of the travel time borne by these
travelers. The interdependencies between the components of the network
necessitates a system-based analytical approach in which the equilibrium flows
and travel times throughout the network have to be determined simultaneous-
ly.

The solution approaches are developed with regard to a network repre-
sentation of the physical structure of streets and transit lines. The network
representation includes nodes and directed links. Each link is associated with a
single flow variable and a measure of travel time. Nodes are not associated
with travel time or any other impedance measure.

The graph representation of the urban network is not unique in that
there are many graphs that can represent the same network. The choice of
representation depends on the level of detail at which the network is modeled,
which, in turn, is a function of the available data and the analysis budget.

Given the origin-destination trip rates, the demand for urban travel can
be formulated in terms of the rule by which motorists (and passengers) choose
a route from their origin to their destination. Different assumptions regarding
these choice mechanisms lead to different equilibrium flow patterns. All route-
choice models, however, assume that motorists minimize their travel time
through the network. The difference between the two types of equilibria dis-
cussed in this book is that user equilibrium assumes that motorists know all
link travel times with certainty. Stochastic user equilibrium models are based

a _ � I__�__1�_�L_.._ � ._..

24

Chap. 1 Urban Transportation Networks Analysis

on the assumption that each motorist may perceive a different travel time and
act accordingly.

1.5 ANNOTATED REFERENCES

The notion of demand/performance equilibrium over urban networks is pre-
sented in several transportation planning textbooks, including Morlok (1978)
and Manheim (1979). In particular, the early work of Beckman et al. (1956)
contains many important conceptual developments. These authors trace a
description of an equilibration process over a simple traffic network to Knight
(1924). A discussion of transportation networks and their representation is
given by Potts and Oliver (1972), Newell (1980), and others.

The operational definition of the user equilibrium given in Section 1.3
was suggested by Wardrop (1952). The concept of stochastic user equilibrium
was developed and formalized by Daganzo and Sheffi (1977).

1.6 PROBLEMS

1.1. Consider a raffle in which the prize money is known and the ticket price is
constant. The number of people buying a ticket is a function of the winning
probability. This probability, in turn, is a function of the number of people buying
tickets. Study this situation in the framework of a demand/performance equilibri-
um. Show, graphically, the equilibrium point and the forces that push toward this
point.

1.2. Find the user equilibrium flow patterns and the equilibrium travel time for the
network described in Figure P1.1. The performance functions are

t = 2 + x,

t2 = 1 + 3x 2

t3 = 3 + X3

where t and x denote the travel time and flow, respectively, on link a (where
a = 1, 2, 3). The origin-destination trip rate is 4 units of flow going from node 1 to
node 3.

Figure P1.1

13. The network in Figure P1.2 includes many links connecting the origin node and
the destination node. The performance curve on each link is linear, that is,

ta = Aa + BX a

___. _

25

26 Part I Urban Networks and Equilibrium

Figure P1.2

where Aa and Ba are constants and, as in Problem 1.2, t and xa represent the travel
time and flow, respectively, on link a. The origin-destination trip rate is q.
(a) Assuming that you know that at equilibrium, all links in this network carry

flow, develop an expression for the flow on each link.
(b) How would you find the flow on each link in cases where it is not clear that all

links are used at equilibrium (i.e., only a subset of the links may be used)?

Part II formulates and solves the standard user-equilibrium problem. The problem
is to find the set of flows that corresponds to the user-equilibrium conditions set
forth in Chapter 1. This part contains four chapters. Chapter 2 reviews, in short,
some concepts in mathematical programming. These concepts are used in Chapter
3 to formulate the equilibrium problem as a mathematical program. Chapter 4
reviews algorithmic approaches to the solution of mathematical programs, and
Chapter 5 concentrates on the solution of the user-equilibrium program.

27

L ____

i

Basic Concepts

in Minimization Problems

This chapter reviews some concepts related to the formulation and solution of
mathematical minimization programs. The focus of the discussion is on the
conditions that characterize the solution of such programs and the conditions
under which a solution may be unique.

In solving a mathematical program, the problem is to choose the values
of a set of I variables, x1, x2 , ... , x,, that minimize a function (usually termed
the objective function) z(x 1, ... , x1), yet comply with certain constraints. Each
constraint can be expressed as an inequality condition on some function,
g(xl, ... , x), of the variables; the set of all possible values of x1, ... , x, that
comply with all the constraints is known as the feasible region. A general
minimization program with J constraints can be written (in standard form) as

min z(xl, ... , x,)

subject to

gl(x., x,) > bl

g2(X2 .., x,) > b2

gj(x, ..., xI) bj

where gj(x 1, ... , x,) 2 bj denotes the jth constraint on the values of the vari-
ables. These equations can be simplified by using vector notation. Accordingly,
let x denote the array (vector) of decision variables, that is, x = (xl, ... , x,).

28

1___� _ _ __ _ _ _ __ __ __ I _ __�___ _

Chap. 2 Basic Concepts in Minimization Problems

Using such notation, the program above can be written as

min z(x) [2.1a]

subject to

gj(x)2 bj; j = 1, ... , J [2. b]

This is the standard form used in this text to write minimization programs.
Note that all constraints are specified using a "greater than or equal to" sign.
Constraint of the type "less than or equal to" can be converted to this stan-
dard form by multiplying them by -1. Equality constraints of the type
gj(x) = bj can be expressed as the pair of constraints gj(x) 2 bj and gj(x) < bj
(where the latter can be multiplied by -1 to conform to the standard form).

The solution to this program, x*, is a feasible value of x that minimizes
z(x), that is,

z(x*) < z(x) for any feasible x [2.2a]

and

gj(x*) > bj V j / J [2.2b]

where J is the set of constraint indices (1, 2, ... , J)t. Condition [2.2a] calls for
the solution, x*, to have the lowest possible value of the objective function,
while Eq. [2.2b] ensures that this solution satisfies the constraints. Note that
the "less than or equal to" condition in Eq. [2.2a] means that there may be
some value of x other than x* which solves the program expressed in Eqs.
[2.1] (hence the aforementioned concern with the conditions for uniqueness of
the solution). Note also that there may be no value of x that satisfies all the
constraints (i.e., Eqs. [2.2b] hold for no x), in which case the program has no
solution.

In the following chapter and in the remainder of this book, it is generally
assumed that there is always at least one value of x that satisfies the con-
straints. Furthermore, this book deals only with programs that possess a finite
minimum which occurs at a finite value of x. To ensure the existence of such a
minimum, these programs have to satisfy certain regularity conditions. In
addition, this book deals only with objective functions and constraints that are
all continuously differentiable.

This chapter focuses on the characteristics of the optimal solutions to
mathematical programs. Three topics are each discussed separately: single-
variable minimization programs, multivariable programs, and some special

tThe notation "V" means "for every." In this case, "V j e f" means "for every j in the set
f" (i.e., j = 1, 2, ... , J). When it is clear what the relevant set is, such notation is usually
shortened in this book to "V j", meaning "for every j in the relevant set."

tThe objective function has to be continuous over the feasible region, which has to be
closed and bounded.

__ _~~~~~_ ------

29

Part II User Equilibrium

cases of multivariable programs that are used frequently in the analysis of
network equilibrium programs.

2.1 PROGRAMS IN ONE VARIABLE

The discussion of single-variable minimization is divided into sections on un-
constrained and constrained problems. For each of these cases, included are
discussion of the first-order conditions, which characterize the solution, and of
the second-order conditions, which deal with its uniqueness. In both cases, it is
assumed that the existence and smoothness conditions mentioned above hold
(either for any value of the argument, in the case of an unconstrained program,
or for the feasible values, in the case of constrained programs).

Unconstrained Minimization Programs

It is well known from elementary calculus that the necessary condition
for a differentiable function in one variable, z(x), to have a minimum at x = x*
is that the derivative of z(x) evaluated at x* equals zero. In other words,

dz(x*) - [2.3]
dx

This is afirst-order condition (involving only first derivatives) for a minimum.t
If there is a minimum at x*, this condition must hold. As demonstrated in
Figure 2.1, however, the first-order condition is not sufficient to ensure that x*
is a minimum of z(x). In this figure dz(x)/dx = 0 for four values of x, namely
x = a, x = b, x = c, and x = d; all of which are stationary points of z(x). Note
that x = a and x = d are local minima (i.e., they minimize the function in their
immediate vicinity), while x = b is a point of inflection and x = c is a (local)
maximum.

To prove that a stationary point (such as x =a in Figure 2.1) is a
minimum, two characteristics have to be demonstrated: (1) that it is a local
minimum and not a local maximum or an inflection point, and (2) that it is a
global minimum. In other words, the value of z(x) at x* is lower than z(x) at
any other x (including, for example, all the other local minima, such as x = d
in Figure 2.1).

A function with a single minimum is called ditonic or unimodal. A
function is ditonic if it is strictly decreasing to the left of the minimum and
strictly increasing to the right. Thus, if a function is ditonic, its stationary point
is a global minimum.

tHere and later in the book, dz(x*)/dx denotes the derivative of z(x) evaluated at x*.

tThe term "unimodal" is sometimes reserved for functions with a single maximum and the
term "ditonic" to functions with a single minimum (i.e., the negative of a unimodal function is a
ditonic function). In this book these terms are used interchangeably to denote a function with a
single minimum.

I·

30

Chap. 2 Basic Concepts in Minimization Problems

z([x

Figure 2.1 Stationary points of z(x).

A sufficient condition for a stationary point to be a local minimum is for
the function to be strictly convex in the vicinity of the stationary point. Intu-
itively, strict convexity means that the function is "heavy in the middle," as
illustrated in the vicinity of x = a and x = d of Figure 2.1. Formally, strict
convexity means that a line segment connecting any two points of the function
lies entirely above the function. In other words, a function is strictly convex if

z[Oxl + (1 -)x 2] < Oz(x) + (1 - O)z(x2) [2.4a]

for any two distinct points x1 and x2 and for any value of 0 where 0 < 0 < 1.
These relationships are shown in Figure 2.2a for a strictly convex function.
(Note that this condition does not require that the function under consider-
ation be differentiable.) Alternatively, strict convexity of differentiable func-
tions can be determined by testing whether a linear approximation to the
function always underestimates the function. Thus z(x) is strictly convex at x1
if and only if

z(x) + d (X2 - xl) < z(x2) [2.4b]

for any point x2 that is not equal to x. This condition is demonstrated in
Figure 2.2b. Finally, if a function is twice differentiable in the vicinity of a
stationary point, the strict convexity condition is equivalent to requiring that
the second derivative of z(x) at x* be positive, that is,

d2 z(x*)
dx2 > 0 [2.4c]

Strict convexity can thus be defined by the line segment condition [2.4a], by
the linear approximation condition [2.4b] (for continuously differentiable
functions), or by the second derivative condition [2.4c] (for twice-continuously

_����___ __ __

31

Part II User Equilibrium

z (x

Oz(x)+(1

z[8.x + (1

fal

I I _ I ox
xi X2

x + (1-e)x 2

z(xl (b)

dz(xl) z(x 2) -
Z(+ (X2-XI)

XI x2
Xl X2

Figure 2.2 Strict convexity can be demonstrated (a) by showing that a line segment
connecting any two points lies entirely above the function, or (b) by showing that a
linear approximation always underestimates the function.

differentiable functions). If a function is strictly convex in the vicinity of a
stationary point, this point is a local minimum.

If a function includes more than one local minimum, it is usually difficult
to demonstrate that a particular local minimum is also a global one. Doing so
may require identification of all the local minima (a process that may involve
repeated solutions) and a comparison of the objective function values at these
points. Such a task can be very difficult and is sometimes impossible. If,
however, x* is the only local minimum of z(x), then, naturally, it is also a
global minimum. To demonstrate that a local minimum is unique, it is suf-
ficient to show that z(x) is convex for all values of x (i.e. that it is globally
convex).

Convexity means that the inequality in Eq. [2.4a] is replaced by a "less
than or equal to" sign, meaning that a line segment never lies below the
function. Similarly, convexity means that a linear approximation to the func-
tion never overestimates it and that the second derivative is nonnegative.

To understand second-order conditions better, note that a function z(x)
can have a unique minimum and not be globally convex, and that convexity
alone does not guarantee the uniqueness of the minimum. Figure 2.3 illustrates
three possible situations: In Figure 2.3a z(x) is convex, but it is not strictly
convex in the vicinity of x*-this function does not have a unique minimum.

. I

I�

32

Chap. 2 Basic Concepts in Minimization Problems

[a) (b (c)

Z Z (Z (x

x* x

Figure 2.3 Convexity and unimodality. (a) z(x) is convex but not strictly convex;
its minimum is not necessarily unique. (b) z(x) is not convex but it is strictly convex
at the vicinity of x*; it is also ditonic and thus x* is a unique minimum. (c) z(x) is
convex everywhere and strictly convex at the vicinity of x*, which is the unique
minimum.

Figure 2.3b depicts a case in which z(x) is not convex even though it is strictly
convex in the vicinity of x*. This function is ditonic and thus its only station-
ary point is also its unique minimum. In general, however, for a function of
this shape it would be hard to demonstrate the uniqueness of the minimum
because the function is not convex. Figure 2.3c illustrates a convex function
that is strictly convex in the vicinity of its unique minimum, x*.

In summary, then, it is sufficient to show that a function z(x) is strictly
convex at x = x* and convex elsewhere in order to establish the fact that x*
minimizes that function. A necessary condition, however, for x* to be a mini-
mum is for the first derivative to vanish at that point. (This is the first-order
condition for a minimum.)

This review of programs in a single variable is extended in the next
section to constrained minimizations. Again, the focus of the discussion is on
the first- and second-order conditions for a minimum.

Constrained Minimization Programs

In constrained minimization it is possible to have a minimum where the
first derivative does not vanish. As a result, the first-order conditions have to
be generalized in order to include this possibility. Consider, for example,
Figure 2.4, showing the function z(x) defined over the feasible region
a' < x < a". In the first case (Figure 2.4a), the minimum point is internal
(inside the feasible region) and the condition dz(x*)/dx = 0 holds, while in
Figure 2.4b the minimum point is on the boundary, at x = a'. Clearly,
dz(a')/dx # 0.

When the minimum is on the boundary of the feasible region, however,
the following observation can be made: If the constraint on which the solution
lies (the binding constraint) is of the type x 2 (), then z(x) must be increasing

__· ____ ___

33

.

Part II User Equilibrium

(a) (b) (c)

kr~~~~ Z xJ

i I

'nr Minimum

x=a' x=a"

I N
I I

ii~~~ \

. ''\ x\ \=a' x\ x =
x*=a' x=a' x=a

Minimum

x*= a"

Figure 2.4 Constrained minimum: (a) internal minimum-dz(x*)/dx = 0 inside the
feasible region; (b) minimum on the boundary of the feasible region-the binding
constraint is x a and dz(x)/dx 2 0; (c) minimum on the boundary-the binding
constraint is x < b and dz(x*)/dx < 0.

(or more precisely nondecreasing) at x*, as is the case in Figure 2.4b. If, on the
other hand, the binding constraint is of the type x < (), then z(x) must be
decreasing (actually, nonincreasing) at x*, as in the case shown in Figure 2.4c.

To characterize these situations mathematically in a statement of first-
order conditions, the problem depicted in Figure 2.4 is first written in a
standard form, as follows (see Eqs. [2.1]):

min z(x) [2.5a]

subject to

x > a' [2.5b]

-x > -a" [2.5c]

where constraints [2.5b] and [2.5c] are expressed as gj(x) > bj [in this case
g,(x) _ x and b1, a', while g2(x) -x and b2 -a"].

When the constraints are expressed in standard form, the aforemen-
tioned observation about the slope of z(x) at x* means that the derivative of
z(x) at x* and the derivative of the binding constraint at this point [dg(x*)/dx]
will always have the same sign (or their product will be zero, that is, they will
never have opposite signs). This observation can be used to extend the first-
order conditions because it holds whenever a minimum occurs on the bound-
ary of the feasible region as well as for an unconstrained solution. In the
example given in Figure 2.4b, this condition can be verified since

dgl(x*)
dx

and from the figure

dz(x*) > 0
dx

Z LxJ

e- - 1~11-"--� -·- I --- `��C------ --�-·C I

34

Chap. 2 Basic Concepts in Minimization Problems 35

whereas for Figure 2.4c,

dg 2(x*) dz(x*)-1 and <0
dx dx

Since both derivatives are scalars, the condition of same signs can be written
as

dz(x*) dgj(x*)
d(x*) = dj(for either = 1 or j = 2 [2.6]
dx dx

where uj is a nonnegative scalar and gj(x) is the binding constraint (which can
be either the first or the second one).

In order to develop a set of first-order conditions that would apply in all
cases (i.e., whether the solution is internal or on the boundary of the feasible
region), define a nonnegative variable, uj, for each of the constraints (not only
the binding ones). If the jth constraint is not binding [i.e., if gj(x*) > bj], let
uj = 0. In other words, the condition

[bi - gj(x*)]ui = 0

holds for all the constraints j E f. (It means that either uj = 0, in which case
the jth constraint may or may not be binding, or uj > 0 and the jth constraint
is binding.) Using this convention, conditions [2.6] can be replaced by the
condition

dz(x*) dgj(x*)
dx Z j dx

where uj is a nonnegative scalar and the sum includes all the constraints.t
Note that this equation generalizes the condition for an unconstrained mini-
mum (see Eq. [2.3]). An unconstrained minimization problem can be looked
upon as a constrained problem with an internal minimum point. In such a
case, all uj = 0 (since none of the constraints is binding) and the condition
above simply states that dz(x*)/dx = 0.

In summary, then, the first-order conditions for a constrained minimum
are

dz(x*) E dg(x*) [2.7a]
dx i dx

uj 0 , uj[bj-gj(x*)] =0, gj(x*)>bj for j = 1, ... , J

[2.7b]

These conditions mean that the derivative of the function at the minimum and

tA notational convention used throughout this text is to omit the complete summation
notation whenever the summation goes over all the indices (or subscripts) in the relevant set. In
this expression "if" is equivalent to "= t" or "v j , ."

_ ~~~~~~~~~~~~~~~~_~~~~~~~~~~~____~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~---- - -

Part II User Equilibrium

the derivatives of the binding constraints at the minimum have the same signs
and that the minimum point is (of course) feasible. Equations [2.7] thus depict
the general form of the first-order conditions for the minimum of a single-
variable function (see Problem 2.5).

The second-order conditions for a constrained minimum are similar to
those for the constrained case, but with one condition added. As in the un-
constrained case, strict convexity of z(x) in the vicinity of x* (where Eqs. [2.7]
hold) would ensure that x* is a local minimum; convexity, however, is not
quite sufficient to guarantee the uniqueness of that minimum. Consider, for
example, the situation depicted in Figure 2.5, where a strictly convex function
z(x) is constrained to the following region: either 0 < x < a or b < x < c. This
function depicts two local minima at x = a and at x = b even though z(x) is
strictly convex everywhere. Again, proving that a local minimum is also a
global one is difficult in the presence of other minima. A condition excluding
situations such as the one depicted in Figure 2.5 is therefore added to the
uniqueness requirements. This condition requires that the constraints define a
convex set of feasible points, or in other words, that the feasible region be
convex. The convexity of the feasible region means that a line segment connec-
ting any two points of that feasible region must lie entirely within the region.
This condition ensures the existence of only one minimum, which must neces-
sarily be the global minimum. It obviously does not hold for the problem
illustrated in Figure 2.5, which does not have a unique minimum.

In conclusion, then, the necessary conditions for a minimum are given by
Eqs. [2.7]. The sufficient conditions include strict convexity in the vicinity of
the minimum point (this guarantees that it is a local minimum) and convexity
of both the objective function and the feasible region (this guarantees that
there are no other local minima).

This concludes the discussion of single-variable programs. The concepts
introduced in this section are expanded in the following section to the multi-
variable case.

x

Figure 2.5 Two local minima for a strictly convex function bounded by a con-
straint set that is not convex.

--�--------r -- --- r�·--rrrrm�--rr�---i---r�- - ------� Z L

36

Chap. 2 Basic Concepts in Minimization Problems

2.2 MULTIDIMENSIONAL PROGRAMS

In multidimensional problems, the objective function is given by z(x), where
x = (x1, ... , x,) is a vector of length I (i.e., it is an array of variables x1, x2, ...
up to x). The constraints are given by gj(x) 2 bj, V j e , where / is the
constraints index set (1, 2, ... , J) and bj is a scalar. Again this discussion of
multivariable minimization programs deals separately with unconstrained and
constrained problems, including a review of both first- and second-order con-
ditions in each case. As in the preceding section, the regularity conditions on
z(x) and gj(x) are assumed to hold, and a solution therefore always exists.

Unconstrained Minimization Programs

If the function to be minimized is unconstrained, the first-order condition
for a minimum at x = x* is that the gradient of z(x) vanish at x*. The gradient
of z(x) with respect to x, V, z(x), is the vector of partial derivatives, that is,

V.z(x) (az(x) az(x) az(x) [2.8]

The subscript x in the gradient notation is usually omitted if the variable with
respect to which the partial derivatives are taken is obvious. At every point x,
the gradient aims in the direction of the steepest (local) increase in z(x); thus
the gradient is the directional derivative of z(x) in the direction of the steepest
ascent. As mentioned above, the first-order condition for a minimum is

Vz(x*) = 0 [2.9a]

meaning that each component of the gradient (see Eq. [2.8]) has to be equal to
zero. In other words,

) = 0 for i = 1, 2, ... , I [2.9b]
axi

This condition is entirely analogous to the condition dz(x*)/dx = 0 used in the
single-variable case. It is only a necessary condition for a minimum; that is, it
establishes the fact that z(x) has a stationary point at x*.

As an example of the application of the first-order conditions, consider
the function z(xl, x 2) where

z(x 1, x 2) = x 2 + 2x2 + 2x 1x2 - 2x1 - 4x2 [2.10]

The gradient of this function at every point (x2 , x2) is given by

Vz(x1, x2) = [(2x1 + 2x2 - 2), (4x2 + 2xl - 4)] [2.11]

The stationary point is where Vz(x1 , x2) = 0, which is the value of x that
solves the equations

2x1 + 2x2 - 2 = 0 [2.12a]

I _ __ _·_ _· ___��

37

2x, + 4X2 - 4 = [2.12b]

Part II User Equilibrium

The solution of these equations is x = 0 and x = 1. Thus x* = (0, 1) is a
stationary point of z(x1, x 2) in Eq. [2.10].

To show that a stationary point, x*, is a local minimum, it is sufficient to
demonstrate that z(x) is strictly convex in the vicinity of x = x*, as was the
case with the single-dimensional function. The conditions for strict convexity
in the multidimensional case parallel those given in the preceding section for
single-variable functions (see Eqs. [2.4]). If a line segment lies entirely above
the function or if it is underestimated by a linear approximation, the function
is strictly convex. Thus the strict convexity condition is

z[Ox' + (1 -)x"] < Oz(x') + (1 -)z(x") [2.13a]

where x' and x" are two different values of x, and 0 is a scalar between zero
and 1, ort

z(x') + Vz(x') (x" - ')T < z(x") [2.13b]

where the superscript T denotes the vector (or matrix) transposition operation.
Alternatively, a function z(x) can be shown to be strictly convex if some
conditions regarding the second derivatives of z(x) hold. To express these
conditions mathematically, the second derivatives are usually arranged in a
(symmetric) matrix form. [This matrix is known as the Hessian of z(x)]. The
Hessian, denoted by V2z(x), is given by

V'z(x)

O2 z(x) O2 z(x) O2 z(x)

OX2 ax1 ax 2 a, ax1

a2 z(x) O2z(x)

Oax aOx aX _

The mathematical condition which ensures that z(x) is strictly convex is that
the Hessian, V2z(x), is positive definite.: If the Hessian is positive definite at
x*, this point is a local minimum of z(x). As in the single-dimensional case, it is
required that a function be convex everywhere in order to ensure that it has
but one local minimum.§

tThis condition can be written in expanded notation as follows:

z(X;, ..,)+ ('; (x' .. - x) < z(x' ... , xZ(x3' X + Y~ x, (X - X)z(x.

$A matrix, H, is positive definite if the product h- H hT is positive for any nonzero vector,
h. A symmetric matrix (such as the Hessian) can also be shown to be positive definite if and only if
its eigenvalues are positive or if its leading principal minor determinants are positive.

§Convexity is associated with a positive-semidefinite Hessian. A matrix H is positive
semidefinite if and only if h H hT > 0 for any nonzero vector h. Conditions [2.13a and 2.13b]
indicate convexity if the "less than" sign is replaced by a "less than or equal to" sign.

38

_ _

Chap. 2 Basic Concepts in Minimization Problems

Z (X , ,X ,)

X,

X2

Figure 2.6 Strictly convex function in two dimensions.

It is important to note that the aforementioned conditions for a matrix
to be positive definite means that any diagonal matrix (i.e., a matrix in which
only the elements along the diagonal are nonzero) with positive elements is
positive definite. Many of the objective functions discussed in this book have
diagonal Hessians and it is therefore only necessary to check the signs of the
diagonal elements to establish that such a Hessian is positive-definite, with the
implication that the objective function is strictly convex.

Figure 2.6 shows the shape of a strictly convex function in two dimen-
sions. The figure also shows a line segment connecting two points on this
function. As required by the strict convexity condition, this line lies entirely
above the function.

It should be noted here that if a line segment connecting any two points
of z(x) never lies above the function, z(x) is concave. Concavity (which is a
sufficient condition for a local maximum to be unique) can also be identified
by a linear approximation of z(x) overestimating (or rather, not underestimat-
ing) the function, or by an appropriate condition on the second derivatives.t
Consequently, the negative of a concave function is a convex function, and
vice versa. Note also that if a (strictly) convex function is multiplied by a
positive constant, the product is still a (strictly) convex function, and that the
sum of (strictly) convex functions is also a (strictly) convex function (see Prob-
lem 2.9). These properties are used later in the text to demonstrate convexity.

To see how the second-order conditions are applied, consider the exam-
ple of minimizing z(x 1, x2) in Eq. [2.10]. The stationary point, x* = (0, 1), is a

tThe Hessian of a concave function is negative semidefinite and the Hessian of a strictly
concave function is negative definite.

· 11111111111111111----�------·----··�--- _ �__�_ I ___�_

39

Part II User Equilibrium

local minimum if the function is strictly convex at that point. If the function is
also convex everywhere, then (0, 1) is a global minimum.

The function z(x1 , x2) in Eq. [2.10] turns out to be strictly convex every-
where. To see this, condition [2.13b] can be used to check if

az(x1, x 2) az(x1 , x 2)
z(x 1 , X2) + (Y1 - X1) + (Y2 - X2) < Z(yl, Y2)

Ax,1 X2

for any two points (x1, x2) and (Y1, Y2). Substitution of the appropriate func-
tional forms (see Eqs. [2.10] and [2.11]) leads to the inequality

[(Yl - 1) + (Y2 - X2)]2 + (Y2 - X2)
2 > 0

This inequality holds for any two distinct points (xl, x2) and (Y1, Y2), meaning
that the strict convexity condition [2.13b] is satisfied by z(x,, x2) in Eq. [2.10].
This function is, therefore, strictly convex everywhere.t Consequently, it can be
concluded that x* = (0, 1) is a local as well as a global minimum of z(x 1, x 2).
The minimum value of z(xl, x2) is z(0, 1) = -2.

Constrained Minimization Programs

As in the single-variable case, the focus of the review in this section is on
the first- and second-order conditions for a minimum. As in that case, the
minimum of a constrained multidimensional program can occur on the
boundary of the feasible region, where the condition Vz(x*) = 0 may not hold.

Consider the two-dimensional program depicted in Figure 2.7a, where
the feasible region is defined by six constraints and the objective function, z(x),
is illustrated by the contour lines. The problem is

min z(x 1, x2)

subject to

gj(xI, X2) > bj; j = 1, 2,..., 6

It is apparent from the figure that the solution of this problem, x* = (x*, x),
lies at the intersection of constraints 2 and 3. These constraints are therefore
binding at the minimum, or, in other words, g2(x*, x*) = b2 and g3(x*, x*) =
b 3 .

The direction perpendicular to any curve of the form g(x1, x2) =
constant, at some point, x' = (x'l, x'2), is given by the gradient of the curve at

tThe strict convexity can also be checked by using the condition on the Hessian, which is
given by

H 2 2)
H=(2)

This matrix is positive definite (its first leading minor equals 2 and its determinant, which is its
second leading minor equals 2 · 4 - 2 2 = 4). Both leading minors are positive and H is, there-
fore, positive definite, meaning that z(x, x2) is strictly convex everywhere.

^^L--�-- - -- - -�--CI --- -�-----�c�-C- - -

40

Chap. 2 Basic Concepts in Minimization Problems

X2

(a)

Xl1

(b)

Figure 2.7 Kuhn-Tucker conditions: (a)
contours of the objective function and the
feasible region; (b) the gradient of the ob-
jective function lies within the cone gener-
ated by the gradients of the binding con-
straints.

Minimum
Point

that point, that is, by the vector

Vg(x') = (x ' ax)

The enlarged portion shown in Figure 2.7b depicts the point (xl, x2) and
the gradients of the two binding constraint functions at this point, Vg2(x*) and
Vg3(x*). The definition of the first-order conditions for constrained problems
rests on the observation that the gradient of the objective function at this
point, Vz(x*), must lie between the gradients of the binding constraints. The
gradient vector, Vz(x*), and its opposite vector, -Vz(x*), as well as -Vg 2(x*)
and -Vg 3(x*), are all shown in Figure 2.7b, where the aforementioned con-
dition can be intuitively verified. If, for example, -Vz(x*) were to point below
-Vg 3(x*), z(x) could be further decreased by sliding to the right, along g3(x)
(see Figure 2.7b). Similarly, if - Vz(x*) were to point above -g 2(x*), z(x) could
surely be decreased further by sliding upward along g2 (x*). Only when
- Vz(x*) is between - Vg2(x*) and - Vg3 (x*) can the objective function not be
decreased further. This condition is a generalization of the "same signs" con-
dition which was applicable in the single-variable case (see Figure 2.4 and the
related argument).

--- - ---

41

Part II User Equilibrium

With multidimensional functions, the constraints define some surfaces
and the gradient of each of these constraints at a given point is a vector that is
perpendicular (normal) to the surface at that point. The observation on which
the first-order conditions are based for this case in that the gradients of the
binding constraints create an imaginary "cone" within which the gradient of
the objective function must lie.

Thus the first-order conditions can be written as a specification of the
direction of the gradient of z(x) at x* in relation to the directions of the
binding constraints. In the multidimensional case, the requirement is that
Vz(x*) be expressed as a linear combination (with nonnegative coefficients) of
the gradients of the binding constraints. For the example in Figure 2.7, this
condition is

Vz(x*) = u2 Vg 2(x*) + u3 Vg 3(x*)

where u2 and u 3 are nonnegative scalars associated with the second and third
constraints, respectively. The same condition can be written in expanded nota-
tion as

az(x*) ag2(x*) ag3(x*)
axi u 2 axi+ U .for = 1, 2

In order to generalize this condition to problems of the type

min z(x)

subject to

gj(x) bj Vj E f

an auxiliary variable, uj, can be defined for each constraint. In a fashion
analogous to the single-dimensional case, let uj be nonnegative if the jth con-
straint is binding at x*, and let ui = 0 for any nonbinding constraint.

The first-order conditions can now be written as follows :t

z(x*) agj(x*)
az(x*) = uj A) for i = 1, 2, ... , I [2.14a]axi u

and

uj 0, uj[bj - g(x*)] = 0, gj(x*) > bj Vj cE f [2.14b]

Conditions [2.14] are known as the Kuhn-Tucker conditions, named after the
two mathematicians who first proved that these are the conditions necessary

tEq. [2.14a] can be written in vector notation as

Vz(x*) = E uj Vgj(x*)
j

_·

42

Chap. 2 Basic Concepts in Minimization Problems

for a constrained minimum. The auxiliary variables uj are known as dual
variables as well as Lagrange multipliers (since Eq. [2.14a] is identical to the
Lagrangian condition in classical optimization theory, as shown in Section
2.3). The condition uj[bj - gj(x*)] = 0, V j e f, is known as the complemen-
tary slackness condition.

The Kuhn-Tucker conditions include the observation (Eq. [2.14a]) that
the gradient of the objective function, at the minimum, can be expressed as a
linear combination, with nonnegative coefficient, of the gradients of the bind-
ing constraints. Equations [2.14b] include the condition that these coefficients
(which are the dual variables) are, in fact, nonnegative. It also includes the
complementary slackness condition, which states that the values of the dual
variable associated with each nonbinding constraint is zero. These three con-
ditions mean that if none of the constraints is binding (or if the program is
unconstrained), the first-order condition is simply Vz(x*) = 0. The last set of
conditions in Eq. [2.14b] ensures that the optimal solution is feasible.

As it turns out, there are some cases, which are seldom encountered in
practice, in which the Kuhn-Tucker conditions do not hold at the minimum.
If the set of constraints satisfies certain constraint qualifications, however, these
situations will not arise. For the purposes of this text, it is sufficient to require
that the constraint set define a convex feasible region. This condition is ex-
plained below in conjunction with the second-order conditions for a con-
strained minimum of a multidimensional function. The constraint qualification
is always satisfied for a convex feasible region.

The values of the dual variables at the solution point provide valuable
information about the sensitivity of the value of z(x) at its minimum [i.e.,
z(x*)] to the constraints. If the right-hand side of the jth constraint, gj(x) b,
is relaxed by some small amount, Ab;, the minimum value of z(x) will decrease
by uj Abi . Thus uj is a measure of the sensitivity of the minimum value of z(x)
to the restriction imposed by the jth constraint. If a constraint is not binding,
one would expect that its relaxation would not affect z(x*) and indeed, for
these constraints uj = 0.

The determination of the first-order conditions of a constrained mini-
mum can be exemplified by using z(x1, x2) in Eq. [2.10]. At this point, how-
ever, assume that the problem is to minimize the function

z(x1, x 2) = x 2 + 2x2 + 2x1x 2 - 2xl - 4x2 [2.15a]

subject to

xl + x2 > 2 [2.15b]

Before this problem is attempted, the known unconstrained solution should be
tested for feasibility since if it is feasible, it will also be optimal. (Why?) As
calculated before, x* = (0, 1); this point, unfortunately, is not feasible since
constraint [2.15b] is not satisfied.

43

Part II User Equilibrium

The Kuhn-Tucker conditions for this problem are as follows :t

2x* + 2x* - 2 = u [2.16a]

4x + 2x* - 4 = u [2.16b]

u(2 - x* - x) = 0 [2.16c]

x* + x* > 2 [2.16d]

u 0 [2.16e]

To solve these equations, note that if u = 0, Eqs. [2.16a] and [2.16b]
reduce to [2.12a] and [2.12b]. The solution of these equations is x = (0, 1), a
solution that does not satisfy Eq. [2.16d]. Consequently, u > 0, meaning that
the solution satisfies the three equations

2x + 2x - 2 - u =0 [2.17a]
2x* + 4x2 - 4 - u = 0 [2.17b]

x + x - 2=0 [2.17c]
The solution of this system of equations is

x1 = 1

u*= 2

The value of the constrained minimum is z(1, 1) = -1, which is, of course,
higher than the value of the unconstrained minimum. (Check this.)

The second-order conditions for constrained multidimensional mini-
mization programs include an additional requirement (in comparison with
unconstrained problems), as in the single-dimensional case. For a program to
have a unique minimum, the constraint set itself has to define a convex feasible
region. Figure 2.8a illustrates two local minima that may occur under a non-
convex feasible region. Figures 2.8b and c illustrate convex feasible regions,
where a line segment connecting any two points of each region lies entirely
within the region. Hence, to ensure that x* is a global minimum, convexity of
the feasible region should be required in addition to requiring the convexity of
z(x) for all feasible x and strict convexity of z(x) at x*.

As in the single-dimensional case, convexity is a relatively strong con-
dition; it is sufficient to require only that a function be ditonic in order to
ensure the uniqueness of a minimum. It is, however, easier to prove convexity

tThe first two conditions correspond to Eq. [2.14a], stating that equality for each of the
two components of the gradient vector. To relate this to Eq. [2.14a], note that the constraint in
this problem is expressed in terms of the function g(x1 , x 2) = x, + x 2, for which Og(x)/ax1 =
and ag(x)/ax 2 = 1. The last three equations above correspond to Eq. [2.14b]. Equation [2.16c]
states the complementary slackness condition, Eq. [2.16d] requires the feasibility of the solution,
and Eq. [2.16e] states the nonnegativity of the dual variable.

44

Chap. 2 Basic Concepts in Minimization Problems

(a) (b) (c)

X2 X2

x 1

Figure 2.8 Shape of the feasible region: (a) nonconvex feasible region-two local
minima are illustrated; (b) convex feasible region; (c) convex feasible region with
linear constraints.

and this should always be tried first. Furthermore, in all cases dealt with in
this text, the objective function is twice continuously differentiable, meaning
that the second derivatives (Hessian) condition can be used to determine con-
vexity. Also, this book deals exclusively with linear constraints and convex
feasible regions.

2.3 SOME SPECIAL PROGRAMS

This section deals with several cases of multidimensional constrained mini-
mization programs that are of special interest in the study of equilibrium
assignment. Included in this discussion are programs with nonnegativity con-
straints, programs with equality constraints, programs with both nonnegati-
vity and equality constraints, and linear programs. This section also suggests
an alternative approach to the statement of the first-order conditions of any
minimization program. This statement is based on the concept of Lagrangians,
which is explained in relation to the programs discussed here.

Nonnegativity Constraints

The first-order conditions for the case in which the feasible region in-
cludes all nonnegative values of x can be posed without reference to the dual
variables. In the one-dimensional case, the program "min z(x) subject to
x 2 0" can result in the two situations shown in Figure 2.9. In Figure 2.9a the
solution is at a point where dz(x*)/dx = 0 (and x* > 0), while in Figure 2.9b,
x* = 0, since the nonnegativity constraint is binding [and dz(x*)/dx > 0]. The
first-order condition for this problem can be written in a form encompassing
both these possible situations, as follows:

* dz(x*) and dz(x*)0 dand >0dx dx

....,.,......,.,..,.............................

..... ,

X xx, XI

-

45

Part II User Equilibrium

Z x)

\\

(a) (b)
Z [X

X*=O

Figure 2.9 First-order conditions for a program with nonnegativity constraints: (a)
internal minimum with dz(x*)/dx = 0 and x* > 0; (b) constrained minimum with
x* = 0 and dz(x*)/dx 2 0.

Both conditions hold at the minimum point of z(x) (i.e., at x*). In addition, the
constraint x* 2 0 has to hold as well.

Similarly, in the multidimensional case, the solution of the program

min z(x) [2.18a]

subject to

xi >0; i= 1,2,..., I [2.18b]

can occur either for a positive x [in which case Vz(x*) = 0] or it can be on the
boundary of the feasible region, where some x = 0. Accordingly, the first-
order conditions for this problem can be stated as

and 0az(x*)
xi

for i = 1, 2, ... , I

Obviously, the condition xi* > 0 has to hold as well for i = 1, 2, ... , I.

Linear Equality Constraints

One of the most widely used programming problem formulations is the
minimization of a convex function subject to a set of equality constraints, that
is,

min z(x)

subject to

hjxi = bj; j =

where hi is a constant.t

[2.20a]

[2.20b]

tA set of linear equality constraints will always satisfy the aforementioned constraint
qualification condition. Furthermore, such a constraint set will define a convex feasible region.

ix = 0
1 axi

[2.19]

IU _ _____ _ ___I_ ---- - ._ _.

46

i
i _ X

yI

" ,X x

Chap. 2 Basic Concepts in Minimization Problems

The Kuhn-Tucker conditions for a stationary point of this program are
as follows (see Eqs. [2.14]):

z(x*) = uj hi for i = 1, ... , I [2.21a]

hijx* = b forj = 1, ... , J [2.21b]

At the solution point all the constraints are binding. The complementary
slackness conditions are therefore automatically satisfied and the dual vari-
ables can have any sign (unlike the case of "greater than or equal to" con-
straints, in which the dual variables are restricted to be nonnegative).

These first-order conditions can also be derived by the method of La-
grange multipliers. This method involves the specifications of an auxiliary
function known as the Lagrangian. It includes the original variables x = (x,,
... , x) and the dual variables u = (u1, ... , us), which are also known as La-
grange multipliers. The Lagrangian, L(x, u), for program [2.20] is given by

L(x, u) = z(x) + uj[bj - hijxi] [2.22]

The usefulness of this formulation is that the stationary point of the La-
grangian coincides with the minimum of the constrained optimization [2.20].
Since the Lagrangian is unconstrained, its stationary point can be found by
solving for the root of the gradient of the Lagrangian, Vx, uL(x, u). Note that
the gradient is taken with respect to both types of variables, x and u. This
gradient can be naturally broken into its two types of components, and thus
the stationary point of Eq. [2.22] is where

V, L(x*, u*) = 0 [2.23a]
and

Vu L(x*, u*) = 0 [2.23b]

Condition [2.23a] means that

Ez(x*) * hij = fori= 1, ... , I [2.24a]
xi j

and [2.23b] means that

b - hj(x*) = 0 for j = 1, ... , J [2.24b]

Thus conditions [2.24] are identical to the Kuhn-Tucker conditions [2.21],
with the Lagrangian multipliers (..., uj, ...) playing the same role that the
dual variables played in Eqs. [2.21]t. Note that at any feasible point (of the

tThe asterisk added to uj in Eq. [2.24] emphasizes that the uj's are interpreted here as
variables of the Lagrangian. The asterisk denotes the values of these variables at the optimal
solution.

_ ___ _ ____~_~_~_I_ ---- �

47

Part II User Equilibrium

original program)

L(x, u) = z(x)

since the added term, ji uj[bj - Ei hij xi], equals zero (each component in the
sum is zero). In particular, note that the values of the Lagrangian and the
objective function are the same at the minimum point, x*.

Nonnegativity and Linear Equality Constraints

Many of the problems dealt with in this book include minimization
problems with both linear equality constraints and nonnegativity constraints.
The general form of these problems is

min z(x) [2.25a]

subject to

E hijxi = bj; j = 1, .. , J [2.25b]
i

and

xi 0; i = 1, ... , I [2.25c]

To find the first-order conditions for a minimum for such a problem, the
Lagrangian with respect to the equality constraints should be formed first as

L(x, u) = z(x) + E ujbj - hijxi] [2.26a]

Then the stationary point of this Lagrangian has to be determined, subject to
the constraint

xi > 0; i = 1, ... , I [2.26b]

Unlike the case discussed previously, this problem includes nonnegativity con-
straints. Consequently, the stationary point of program [2.26] has to be deter-
mined by the method used to define the first-order condition for such pro-
grams, shown in Eqs. [2.19]. For program [2.26] these conditions are the
following:

aL(x*, u*) aL(x*, u*)
x 0 and > 0 i [2.27a]

Oxi aXi

OL(x*, u*) = 0 V j [2.27b]
auj

Also, x* > O, V i, as required by Eq. [2.26b]. Note that in comparison with the
first-order conditions for problems with only equality constraints, condition
[2.27a] replaces [2.23a] (to account for the nonnegativity of all x). Equation
[2.27b] requires, simply, that the derivatives of L(x, u) with respect to u vanish

.�111111�- - --- - --I - �----C·---�l --- 115

48

Chap. 2 Basic Concepts in Minimization Problems

at the minimum. No other condition is necessary since the values of u are not
constrained to be nonnegative (or anything else). This condition, then, is iden-
tical to [2.23b], specifying the original constraint.

The first-order conditions for the programs with linear equality and
nonnegativity constraints can be written explicitly as follows:

X*O (ajx*-E uth)= o Vi [2.28a]

az(x*)
z() uj h 0 V i [2.28b]

axi

hx* = bj Vj [2.28c]

x* > 0 V i [2.28d]

These conditions are referred to repeatedly throughout the text. The same
conditions can be derived also by applying the Kuhn-Tucker conditions
[2.14] directly (see Problem 2.11).

More about Lagrangianst

Lagrangians can be used to derive the first-order conditions for general
mathematical programs such as

min z(x) [2.29a]

subject to

gi(x) > bj v j e f [2.29b]

This program can include any type of constraints. The Lagrangian for this
program is given byt

L(x, u) = z(x) + E uj[bj - gj(x)] [2.30]

The dual variables in this formulation are restricted to be nonnegative, due to
the "greater than or equal to" type of constraints (as in the case discussed in
Section 2.2). This distinguishes this formulation from the case of equality
constraints in which the dual variables are unrestricted in sign. (See Problem
2.18.)

As it turns out, the stationary point of the Lagrangian of a convex
function is not at a minimum or at a maximum of L(x, u) but rather at a
saddle point of the Lagrangian. In fact, L(x*, u*) minimizes L(x, u) with respect

tThis section can be skipped without loss of continuity. The material in here is needed
only as a background to the section on estimation of origin-destination matrices in Chapter 13.

tNote that Eq. [2.22] is a particular case of this Lagrangian.

__)· ___. ____ _ ___

49

Part II User Equilibrium

L (x,u) u

I/U
I- o x

Figure 2.10 Saddle point of a two-argument function. The point (0, 0) maximizes
L(x, u) with respect to u and minimizes L(x, u) with respect to x.

to x and maximizes it with respect to u. This condition can be stated as

L(x*, u) < L(x*, u*) < L(x, u*) [2.31]

Figure 2.10 depicts the shape of saddle point for a function of two variables.
In order to write the first-order conditions of Lagrangian [2.30], note

that its minimization is unconstrained with respect to x. The maximization
with respect to u, however, is subject to the nonnegativity constraints. The
saddle point of L(x, u) satisfies, then, the following set of first-order conditions:

L(x*, u*) = 0 V i [2.32a]
ax i

aL(x*, u*) aL(x*, u*)
uj = and 0 Vj [2.32b]

uj j 5uj

In addition, it is required that uj > 0, V j. Condition [2.32a] states simply that
the gradient vanishes at the stationary point. Conditions [2.32b] parallel con-
dition [2.19] but for a maximum of a function (see also Eq. [2.27a]). Since
L(x, u) has to be maximized with respect to u = (u,, ... , u), the maximum of
L(x, u) with respect to uj can occurt either at a point where aL(x, u)/auj = 0 or
at a point where uj = 0. In the latter case, it must be true that 8L(x, u)/au < 0.
This observation gives rise to conditions [2.32b]. Conditions [2.32] can be
written explicitly as

Oz(x*) agx*) V i [2.33a
Ox, Vi [2.33a]xi

b - gj(x*) < 0 V j [2.33b]

uj[b - g(x*)] = 0 V j [2.33c]

tAssuming, of course, that the maximum exists.

_____. ___�I _�_ _I __ ___ _ �_ __ _ II _ __ 1_�1__ _ �_�_�_ ____

50

Chap. 2 Basic Concepts in Minimization Problems

and, by definition,

u7 0 Vj [2.33d]

These conditions are identical to the Kuhn-Tucker conditions [2.14].
The Lagrangian approach means that constrained minimization pro-

grams can be solved as unconstrained problems of finding the saddle point of
the Lagrangian. This point can be found by minimizing the Lagrangian with
respect to x given a, and then maximizing over all values of u. This mini-
mization approach is used in Chapter 13. In other parts of the book, the
Lagrangian is used only as an aid in the formulation of first-order conditions.

Note that the functional form of the Lagrangian demonstrates why the
dual variables can be interpreted as a measure of the sensitivity of the optimal
solution to a constraint relaxation, as argued in Section 2.2. At the solution
point,

L(x*, u*) = z(x*) + E uj[bj - gj(x*)] [2.34]
J

At this point L(x*, u*) = z(x*). If, however, the kth constraint is relaxed by a
small amount, Abk, and bk in [2.34] is replaced by bk - Abk, the new minimum
value of L(x*, u*) will approximately equal the old value (before the relax-
ation) minus uk Abk. Thus a relaxation of the kth constraint by Abk improves
the optimal value of the objective function by, approximately, uk Abk.

Linear Programs

A special case of mathematical programming is linear programming
(LP). In a linear minimization program, both the objective function and the
constraints are linear functions of x. A linear program can be written as

min ci xi [2.35a]

subject to

hx i bj Vj [2.35b]

where ci and hij are constants and the summations go from i = 1 to i = I.
The widespread use of linear programming problems stems from the

relative ease of solving them. Large linear programming problems can be
solved very efficiently by using modern computers. The ease of solving linear
programs results from the fact that their solutions never lie at an internal point
but always at the boundary of the feasible region. Furthermore, if a solution
exists, it will always be at a "corner" of the feasible region. Thus, instead of
searching for a minimum all over the feasible region, only the corner points of
this region have to be checked. This property is intuitively apparent in Figure
2.11a, which illustrates a feasible region and the contour lines of an objective
function for a linear program in two variables, x, and x2. The simplex method

_ ____ _·

51

Part II User Equilibrium

(a) (b)

X2 X2

:: : :: ,:,...' i Mini.....ma

!*1lii ~!.":.i . .. \

..... \........ ,
' , i ,.i , g \

... crsng
.. ^ .!!'*' ctive function : '-.... . !. vDecreaingfy4~l-sne function .A'~~'etive function

.................... fu. :: n

Figure 2.11 Linear programs in two variables: (a) the solution is at a corner of the
feasible region; (b) multiple minima.

for solving linear programs exploits this property by progressing through
adjacent corners of the feasible region.

In some cases, multiple minima [all with the same value of z(x*)] may
exist (since the "strict convexity" condition does not apply to linear pro-
grams), as illustrated in Figure 2.11b. Some of these minima, however, will
always be at the intersection of several constraints (in other words, at the
corners of the feasible region). The minimum of z(x) thus, can still be deter-
mined even if only the corners of the feasible region are searched.

2.4 SUMMARY

Chapter 2 reviews the necessary and sufficient conditions for a minimum of a
constrained minimization program. The necessary (first-order) conditions are
formulated in terms of a set of auxiliary variables known as the dual variables.
Each dual variable is associated with a constraint and its value at the solution
point indicates the sensitivity of the solution to a small relaxation or tight-
ening of that constraint. Consequently, it is zero for nonbinding constraints
and nonnegative for the binding constraints. If the program is unconstrained,
these first-order conditions (known as the Kuhn-Tucker conditions) reduce to
the requirement that the gradient vanishes. These conditions alone, however,
cannot be used to identify the minimum of any program because they hold at
any stationary point of the objective function and not only at minima.

To make sure that a stationary point, x*, is the minimum of some
function z(x), two requirements have to be fulfilled: (1) x* should be a local
minimum, and (2) x* should be either the lowest of all the local minima or the
only one. In order to meet the first requirement, it is sufficient to show that
z(x) is strictly convex in the vicinity of x*. The second requirement is difficult
to meet if there exist multiple minima. It is sufficient, however, to show that
z(x) is convex in order to ensure that a local minimum is unique (i.e., that no

*_ _ __ _ _ ___ _I I ___

52

Chap. 2 Basic Concepts in Minimization Problems

other local maxima exist). If a program is constrained, it is also required that
the constraint set define a convex feasible region in order to ensure uniqueness.
Convexity (or strict convexity) is a second-order condition that can be es-
tablished with the help of several criteria. The criterion used most often in this
book applies when the objective function is twice differentiable; in this case
strict convexity can be established by determining that the Hessian of the
objective function is positive definite. This condition can easily be checked in
cases in which the Hessian is diagonal; if all the entries are positive, the
Hessian is positive definite. This implies that the objective function is strictly
convex. If the diagonal entries are nonnegative, the Hessian is positive semidef-
inite, meaning that the objective function is convex.

Two special types of mathematical programs are highlighted in Section
2.3. The first one is a program with only equality and nonnegativity con-
straints. This type of program is used throughout the book and thus its first-
order conditions are derived explicitly. The constraint set of such a program is
always convex, meaning that only the objective function has to be checked in
order to establish the uniqueness of a minimum.

The first-order conditions for this type of programs, as well as for general
maximization programs can be derived through the use of the Lagrangian,
which is a function of the original variables and the dual variables of the
program. The Lagrangian approach is used repeatedly throughout this book.

The second type of program highlighted is a linear program where both
the objective function and the constraints are linear. This type of program is
particularly easy to solve and, in fact, the solution techniques to many nonlin-
ear programs consist of repeated solutions of a related linear program.

2.5 ANNOTATED REFERENCES

The material covered in this chapter can be found in any standard mathemat-
ical programming text. At the elementary level the reader can consult
Chapters 14 and 15 of Wagner (1975), or the texts by Simmons (1975), Bradley
et al. (1977), or Wismer and Chattergy (1978). A somewhat more advanced
treatment is offered by Zangwill (1969) and Luenberger (1973).

2.6 PROBLEMS

2.1. Show that the first derivative of a continuously differentiable function, z(x), is zero
at a local minimum.

*2.2. Show that if a function is continuously differentiable, it is strictly convex if and
only if a linear approximation to the function always underestimates it. (Hint:
Show that if condition [2.4a] holds, then [2.4b] is true, and if [2.4b] holds, then
[2.4a] is true.)

*Problems marked with an asterisk require a somewhat higher level of mathematics than
the rest.

____�I�

53

Part II User Equilibrium

*2.3. Show that if a function is twice continuously differentiable, it is strictly convex if
and only if the second derivative of the function is positive. (Hint: Show that if
condition [2.4a] holds, then [2.4c] is true, and if [2.4c] holds, then [2.4a] is true.)

2.4. In which of the following cases does the program min z(x) subject to g(x) 2 bj
with j = 1, ... , J have a unique minimum? Explain your answers.
(a) z(x) is convex and the constraint set is convex.
(b) z(x) is ditonic and unconstrained.
(c) z(x) is monotonically increasing and unconstrained.
(d) z(x) is concave and the constraint set is convex.
(e) z(x) is piecewise continuous over a convex constraint set.

2.5. Consider the program min z(x) = (x - 2)2 subject to 0 < x < 1.
(a) Write this program in standard form.
(b) Show that the first-order conditions [2.7] hold at the point that minimizes

z(x) in the feasible region.

2.6. Plot the contours (in the feasible region only) of a two-dimensional function
z(x1 , x2) subject to 0 x1 < a, 0 < x 2 < b under the assumption that the func-
tion is:
(a) Strictly convex.
(b) Convex with multiple minima.
(c) Linear.
(d) Constrained by x, + x 2 = c (in addition to the previous constraints).

*2.7. Show that the gradient always points in the direction of the steepest (local)
increase in z(x).

2.8. Calculate the gradient of z(x, x2) = 2(xX - 3)2 + 3(x2 - 2)2 at (xt, x 2) = (2, 3)
and at (xl, x2) = (3, 2).

2.9. Show that the sum of convex functions is a convex function.

2.10. The value of the dual variable used in solving Eqs. [2.15] is u* = 2. Relax the
constraint by a small amount and solve the program again. Show that u* mea-
sures the sensitivity of z(x*) to the binding constraint.

2.11. (a) Using the Kuhn-Tucker conditions, show that Eq. [2.19] holds if the only
constraints are nonnegativity constraints.

(b) Derive Eqs. [2.28] directly from the Kuhn-Tucker conditions (Eqs. [2.14]).

2.12. Using the Lagrangian of z(x) subject to gj(x) > bj for j = 1, ... , J, demonstrate
why a relaxation of the jth constraint by a small amount, Abj, would decrease
z(x*) by uj Ab i .

2.13. Using the Kuhn-Tucker conditions, solve the problem

min z(x1 , x 2) = 4(x1 - 2)2 + 3(x 2 - 4)2

subject to

x 1 + x 2 2 5

xl 21
x2 2

Show that the solution is unique.

54

Chap. 2 Basic Concepts in Minimization Problems

2.14. Solve the program

min z(x, x 2) = 5x 2 - 3xlx 2 + 2X2 + 7

subject to

2x1 + x 2 = 5

x1 20

x2 20

using Lagrangians. Plot the feasible region.

2.15. Solve the program

min z(x1 , x 2) = 2x 1 + x 2

subject to

3x1 + x 2 1

x1 + 4x2 _ 2

-x+x 2 1

Plot the feasible region and the contours of the objective function.

2.16. Given the function

z(x1, x 2, x 3) = 3X2 + 2x 1x2 + 6X2 - x 2 x 3 + 5x2 - 4x, - 2x2 - 6x3 + 9

(a) Find the minimum of z(xl, X 2 , x 3).
(b) Show that it is a local minimum.
(c) Show that this local minimum is a global minimum.

2.17. Given that the dual variables indicate the improvement in the objective function
value, associated with the relaxation of any constraint, argue why u 2> 0, V j, for a
minimization program with standard inequality constraints and why ui can have
any sign for equality constraints.

2.18. Derive the Kuhn-Tucker conditions for the program

min z(x)

subject to

hijx = bj
i

Vj

without using Lagrangians. (Hint: Express the constraints in standard form.)
Show that the dual variables associated with equality constraints are unrestricted
in sign.

- - ____ ___.

55

3

The traffic assignment or the transportation network equilibrium problem was
defined in Chapter 1. As mentioned there, the basic problem is to find the link
flows given the origin-destination trip rates, the network, and the link per-
formance functions (see Section 1.3). The solution of the problem is based on
the behavioral assumption that each motorist travels on the path that mini-
mizes the travel timet from origin to destination. This choice rule implies that
at equilibrium the link-flow pattern is such that the travel times on all used
paths connecting any given O-D pair will be equal; the travel time on all of
these used paths will also be less than or equal to the travel time on any of the
unused paths. At this point, the network is in user equilibrium; no motorist
can experience a lower travel time by unilaterally changing routes.

Section 1.3 demonstrated how the user-equilibrium flow pattern can be
found for a small network by using graphical methods. Unfortunately, such
methods cannot be used to solve for equilibrium over networks with a large
number of nodes, links, and O-D pairs. The approach described in this text for
solving large problems uses the equivalent minimization method. This ap-
proach involves the formulation of a mathematical program, the solution of
which is the user-equilibrium flow pattern. This general approach is used often
in operations research, in cases in which it is easier to minimize the equivalent
program than to solve a set of conditions directly.

For the minimization formulation to be useful, the equivalent mathemat-

tAs mentioned in Section 1.3, the term "travel time" can be understood to represent
general travel impedance, combining elements of travel costs and other components of travel
disutility.

56

v

Chap. 3 Formulating the Assignment Problem as a Mathematical Program

ical program has to have a unique solution, which also satisfies the equilibri-
um conditions. Furthermore, the program has to be relatively easy to solve.
The focus of this chapter is on the formulation of the equivalent minimization
program corresponding to the equilibrium traffic assignment problem and on
the properties of this program. Solution procedures are then described in
Chapters 4 and 5. This chapter is organized as follows: Section 3.1 presents the
equivalent minimization formulation, Section 3.2 shows that its solution sa-
tisfies the equilibrium conditions, and Section 3.3 proves that this solution is
unique. Sections 3.4 and 3.5 explore the nature of the minimization program
and the user-equilibrium flow pattern by comparing them to a related flow
pattern over the network.

Before the basic formulation is discussed, the following paragraphs pre-
sent the network notations used in this chapter and throughout this text. The
network itself is represented by a directed graph that includes a set of consecu-
tively numbered nodes, A; and a set of consecutively numbered arcs (links),
d. In some cases it will be useful to refer to links by their end nodes (i.e., link
m-, n leading from node m to node n), especially in discussing certain algo-
rithms. In these cases the notations will be clarified before the discussion. Let
X denote the set of origin centroids (which are the nodes at which flows are
generated) and let Y denote the set of destination centroids (which are the
nodes at which flows terminate). The origin node set and the destination node
set are not mutually exclusive since nodes can serve as origins and destinations
of different trips at the same time (i.e., X n 9° # 0). Each O-D pair r-s is
connected by a set of paths (routes) through the network. This set is denoted
by 'Xs where r e ? and s e Y9.

The origin-destination matrix is denoted by q with entries q,s. In other
words, q,, is the trip rate between origin r and destination s during the period
of analysis. Let x, and t, represent the flow and travel time, respectively, on
link a (where a E a). Furthermore, t, = t(xa), where t() represents the re-
lationship between flow and travel time for link a. In other words, ta(Xa) is the
link performance function (which is also known as the volume-delay curve or
the link congestion function). Similarly, let f s and c represent the flow and
travel time, respectively, on path k connecting origin r and destination s (k E

rXs). The travel time on a particular path is the sum of the travel time on the
links comprising this path. This relationship can be expressed mathematically
as

C = Y, t k cV k e , Vs e [3.1 a]
a

where sk = 1 if link a is a part of path k connecting O-D pair r-s, and
k = 0 otherwise. Using the same indicator variable, the link flow can be

expressed as a function of the path flow, that is,

Xa = E f s k V a / [3.lb]
r s k

This equation means that the flow on each arc is the sum of the flows on all

I I~~~~~ I- .L___ _---^--�- - - ---

57

Part II User Equilibrium

1 1
3

2 4
Figure 3.1 Network example with two

(2 O-D pairs and four links.

paths going through that arc. Equations [3.1] are known as the path-arc
incidence relationships.

As an example of the use of the incidence relationships, consider the
simple network shown in Figure 3.1. It includes two O-D pairs: 1-4 and 2-4
(node 3 is neither an origin nor a destination point). The link numbers are
written on the links. Assume now that the first path from origin node 1 to
destination node 4 uses links 1 and 3 and the second one uses links 1 and 4.
Similarly, assume that the first path from origin node 2 to destination node 4
uses links 2 and 3 and the second one uses links 2 and 4. For example,
1, = 1 (since link 1 is on path 1 from node 1 to node 4), but 24 = O (since

link 3 is not on the second path from node 2 to node 4). The incidence
relationships for this network means that, for example,

14 = t14 + 614 14 14c 4 = t1 1 t2l + t32 3.1 + t4 64.1

= tl + t3

Thus Eq. [3.1a] reduces to the anticipated result that the travel time on path 1
between origin 1 and destination 4 is the sum of the travel times on the links
comprising this path. Similarly,

X3 =fI464 1 +f1 4
24 +f24641 +f24 24

x3 1 31 2 3, 2+fl 3, 2 3,2

=f14 +f24

Again, Eq. [3.1b] gives the anticipated result here--that the flow on a particu-
lar link is the sum of the path flows traversing this link.

Many of the presentations appearing later in the text can be simplified
by using vector notation. In most cases this notation is used only to shorten
some mathematical expressions [as was the case in Chapter 2, where z(xl, ... ,
x,) was denoted by z(x)]. Using vector notation, then, let x = (..., x, ...),(t=(....t,...), f*(, f(f), cr=(...,C), and
c = (..., c, ...). Furthermore, let A be the link-path incidence matrix with
elements 6 .

k. Typically, this matrix is arranged in block form by O-D pair. In
other words, A = (..., ",...), where A'" is the link-path incidence matrix for
O-D pair r-s. The number of rows in the incidence matrix, Ar", equals the
number of links in the network and the number of columns in this matrix is
the number of paths between origin r and destination s. The element in the ath
row and kth column of A's is 6' k, in other words (A's)a, k = 6 k. Using vector
operations, the incidence relationships can now be written in matrix notation
as

58

c = - and x =f -A' [3.2]

Chap. 3 Formulating the Assignment Problem as a Mathematical Program

TABLE 3.1 Basic Network Notation

; node (index) set
.rd, arc (index) set

t, set of origin nodes; A c '
Y, set of destination nodes; _C Xr

r',,, set of paths connecting O-D pair r-s; r E b, s E Y
xa, flow on arc a; x = (..., x,.....)
ta, travel time on arc a; t = (..., ta, *..)
f.'k, flow on path k connecting O-D pair r-s; f" = (... ,f',....);

f =(..., f, *--)
rC, travel time on path k connecting O-D pair r-s; c" = (...,.);

c = (..., c', ...)
q,,, trip rate between origin r and destination s; (q),, = q,,

1 if link a is on path k between O-D pair r-s
6. k indicator variable: 6aak =o6~k' a.Y~U * k ~Y10 otherwise

(A')a, a , k; (... , *...)

The incidence matrix for the network example depicted in Figure 3.1 can
be written as follows:

O-D O-D
1-4 2-4

path 1 2 1 2
link

1 I 00
2 0 1 1

3 1 0 1 0

4 1 0 1

As the reader can check, Eq. [3.2] is identical to Eqs. [3.1] in terms of
specifying the relationships between flows and travel times for the network
example shown in Figure 3.1.

The network notation introduced here is summarized in Table 3.1. Fur-
ther notation is introduced as needed.

3.1 THE BASIC TRANSFORMATION

The equilibrium assignment problem is to find the link flows, x, that satisfy the
user-equilibrium criterion when all the origin-destination entries, q, have been
appropriately assigned. This link-flow pattern can be obtained by solving the
following mathematical program:

lxFo

min z(x) = ta(co) dwo [3.3a]
a JO

___._ ._ __

59

Part II User Equilibrium

subject to

Zfs = qrs V r, s [3.3b]
k

f s 2 0 V k, r, s [3.3c]

The definitional constraints

Xa = Z E X f kf[kk V a [3.3d]
r s k

are also part of this program.
In this formulation, the objective function is the sum of the integrals of

the link performance functions. This function does not have any intuitive
economic or behavioral interpretation. It should be viewed strictly as a math-
ematical construct that is utilized to solve equilibrium problems.

Equation [3.3b] represents a set of flow conservation constraints. These
constraints state that the flow on all paths connecting each O-D pair has to
equal the O-D trip rate. In other words, all O-D trip rates have to be assigned
to the network. The nonnegativity conditions in Eq. [3.3c] are required to
ensure that the solution of the program will be physically meaningful.

The objective function of program [3.3], z(x), is formulated in terms of
link flows, whereas the flow conservation constraints are formulated in terms
of path flows. The network structure enters this formulation through the defi-
nitional incidence relationships [3.3d]. These incidence relationships express
the link flows in terms of the path flows [i.e., x = x(f)]. The incidence relation-
ships also mean that the partial derivative of link flow can be defined with
respect to a particular path flow.t In other words,

Ox,(f) a
aaf) n_ k ' a.yfs kr = a[3.4]

since af[/f" = 0 if r-s : m-n or k # 1. Equation [3.4] implies that the de-
rivative of the flow on link a with respect to the flow on path I between origin
m and destination n equals 1 if the link is a part of that path and zero
otherwise. These relationships are used later in the text to investigate the first-
and second-order conditions of program [3.3].

It is important to note that this formulation assumes that the travel time
on a given link is a function of the flow on that link only and not of the flow
on any other link in the network. This somewhat restrictive assumption is
discussed in detail and subsequently relaxed in Chapter 8. In addition, the link
performance functions are assumed to be positive and increasing. These latter

tThe function x(f) includes flow summation using the subscripts r, s, and k. To avoid
confusion in differentiation, the variable with respect to which the derivative is being taken is
subscripted by m, n, and 1. Thus f"" is the flow on path I between origin m and destination n.
Similarly, xb is used below when the derivative of an expression including a sum over link flows is
taken with respect to the flow on a particular link.

I -

60

Chap. 3 Formulating the Assignment Problem as a Mathematical Program

to
[link tra'

time I

"free flow"
travel time

Figure 3.2 Typical link performance
function. t(x).

Xa

assumptions are not restrictive in the sense that the congestion effects de-
scribed by these functions exhibit both characteristics, as mentioned in Section
1.2 (note that these curves are also convex). A typical performance curve is
depicted in Figure 3.2 (see also Figure 1.8). The assumptions on the per-
formance curves can be written mathematically as

at0 (x) = 0 V a ¢ b [3.5a]
DXb

Ua(Xa) > 0 V a [3.5b]ax,
The problem formulation represented by Eqs. [3.3] is known as Beck-

mann's transformation. It has been evident in the transportation literature
since the mid-1950s, but its usefulness became apparent only when solution
algorithms for this program were developed in the late 1960s and early 1970s.
Some of these algorithms are discussed in Chapter 5.

The following section formally proves that the solution to Beckmann's
transformation satisfies the user-equilibrium conditions. This equivalency is
first illustrated, however, for a simple situation.

Consider the network depicted in Figure 3.3. This network includes two
paths (which are also links), leading from the origin, 0, to the destination, D.
The volume-delay curves for the two links are given by

t = 2 + xl [3.6a]

t2 = 1 + 2x 2 [3.6b]

The O-D flow, q, is 5 units of flow, that is,

x1 + x 2 = 5 [3.6c]

The equilibrium condition for this example can be expressed as (see Section
1.3)

t_ < t2 ifx1 >0 and t1 2 t2 if x 2 > 0 [3.6d]

For this example it can be verified by inspection that both paths will be used

��___·_

61

Part II User Equilibrium

Link 2

(a)

Link 1

. t

(b)

Figure 33 Equilibrium example: (a) a
two-link network; (b) the performance

racxy I; I fintin n th nilihril ti
I z O rlow t v n/minzA C~LV S r ~* V IluL" UV ,v .

at equilibrium and the last equation can therefore be written simply (given
that x1 > 0 and x2 > O) as

tl = t2 [3.6e]

The equilibrium problem then, is to solve four equations (the two volume-
delay curves [3.6a] and [3.6b], the flow conservation condition [3.6c], and the
user-equilibrium condition [3.6e]), in four unknowns: x1 , x2 , t1, and t2 . The
solution to this set of equations is

x1 = 3 flow units

x2 = 2 flow units

t = t2 = 5 time units

When the problem is formulated as a minimization program, the result is the
following:

min z(x) = (2 + co) dco + (1 + 2co) dco

subject to

x1 + x 2 = 5

x1, x 2 > 0

To set the problem up as a simple one-dimensional unconstrained mini-
mization, x2 = 5 - x1 can be substituted into the objective function and into
the remaining (nonnegativity) constraints to get the problem

min z(x1) = (2 + co) dw + (1 + 2co) dco [3.7a]
mio o~,=P2 +o)d 5

U,

E

U,

I.-

� I

62

Chap. 3 Formulating the Assignment Problem as a Mathematical Program

subject to

x1 2>0 and 5-x 20 [3.7b]

To solve this program, the constraints can be relaxed and the objective func-
tion can be minimized as an unconstrained program. If the solution satisfies
the constraints, it is valid for the constrained program as well. Carrying out
the integration and collecting similar terms, the objective function becomes

z(x1) = 1.5x' - 9x1 + 30

This function attains its minimum at x* = 3, where dz(xl)/dxl = 0. This solu-
tion satisfies the two constraints in Eq. [3.7b] and is therefore a minimum of
the constrained program [3.7] as well. The original flow conservation con-
straint guarantees that x = 2 and indeed, the solution of the mathematical
program is identical to the solution of the equilibrium equations. This equival-
ency is demonstrated for the general case in the next section.

3.2 EQUIVALENCY CONDITIONS

To demonstrate the equivalence of the equilibrium assignment problem and
program [3.3], it has to be shown that any flow pattern that solves [3.3] also
satisfies the equilibrium conditions. This equivalency is demonstrated in this
section by proving that the first-order conditions for the minimization pro-
gram are identical to the equilibrium conditions. From the discussion in
Chapter 2, recall that the solution of any mathematical program satisfies its
first-order conditions at any local minimum or any stationary point of the
program. If the first-order conditions are identical to the equilibrium con-
ditions, the latter hold at any local minimum (or stationary point). Thus, by
finding a minimum point of the program, an equilibrium flow pattern is ob-
tained.

To derive the first-order conditions of the Beckmann transformation,
observe that it is a minimization problem with linear equality and nonnegati-
vity constraints. A general form of the first-order conditions for such problems
was derived in Section 2.3 (see Eqs. [2.25] and the related discussion). Follow-
ing that section, the Lagrangian of the equivalent minimization problem with
respect to the equality constraints [3.3b] can be formulated ast

f -C s [3.8a]L(f, u) = z[x(f)] + E ur,(q,,- - [3.8a]
rs k

where u, denotes the dual variable associated with the flow conservation
constraint for O-D pair r-s in Eq. [3.3b]. The first-order conditions of pro-
gram [3.3] are equivalent to the first-order conditions of Lagrangian [3.8a],

tThe shorthand notation ",," is used throughout the book to abbreviate "y, Y,."

_·~~~~~_____ __ __·_ ~~~~~~~~~~~~~~~~~---- -__

63

Part II User Equilibrium

given that L(f, u) has to be minimized with respect to nonnegative path flows,
that is,

fk 2 V k, r, s [3.8b]

The formulation of this Lagrangian is given in terms of path flow, by
using the incidence relationships, Xa = Xa(f) in Eq. [3.3d], for every link a. At
the stationary point of the Lagrangian, the following conditions have to hold
with respect to the path-flow variables:

8L(f, u) aL(f, u)
s f) 0 and L(f) k, r, s [3.9a]

ors afk

and the following conditions have to hold with respect to the dual variables:

aL(f, u)Lf u = 0 V r, s [3.9b]
Ours

Also, the nonnegativity constraints have to hold (i.e., f 2> 0, V k, r, s). The
asterisks have been omitted from the last expressions (in comparison with Eqs.
[2.27]) for clarity of notation. This practice is followed hereafter in this book.

Condition [3.9b] simply states the flow conservation constraints, which
obviously, have to hold at equilibrium. The first-order conditions expressed in
Eq. [3.9a] can be obtained explicitly by calculating the partial derivatives of
L(f, u) with respect to the flow variables, fAn, and substituting the result into
[3.9a]. This derivative is given by

L(f u) z[x(f)] + rs q f [3.10]

The right-hand side of Eq. [3.10] consists of the sum of two types of terms, the
first of which is the derivative of the objective function and the second is the
derivative of a term involving the constraints. These two types of terms are
each calculated separately.

The first term on the right-hand side of Eq. [3.10] is the derivative of the
objective function [3.3a] with respect to f7n. This derivative can be evaluated
by using the chain rule:

az[x(f)] z(x) Xb [311
beCrd aCb af~ [3.11]

afte b Xb a M
Each term in the sum on the right-hand side of this equation is the product of
two quantities. The first quantity is aZ(x)/axb, which can be easily calculated
since the travel time on any link is a function of the flow on that link only.
Hence

az(x)_ a E J t(o) do = tb [3.12a]
The second quantity in the product is the partial derivative of a link flow with

The second quantity in the product is the partial derivative of a link flow with

� r�- --- ----·----�---�- - - ---�--·---�-PI· ---p - -- �

64

Chap. 3 Formulating the Assignment Problem as a Mathematical Program

respect to the flow on a particular path. As shown in Section 3.1 (see Eq.
[3.4]),

hym= b1n~S" l [3.12b]b, I

Substituting the last two expressions into Eq. [3.11], the derivative of the
objective function with respect to the flow on a particular path becomes

Ozx(f)]
az[x(f)] = E tbn = = c [3.13]af" - b,

In other words, it is the travel time on that particular path.
The second type of term in Eq. [3.10] is even simpler to calculate since

afks 1I if r = m, s = n and k =
Of"n 0 otherwise

Thus (since q,, is a constant and u,, is not a function off m") this term becomes

fmn E ·uq i - zfk Umn [3.14]
f" s qn

Substituting both [3.13] and [3.14] into Eq. [3.10], the partial derivative of
the Lagrangian becomes

a L(f, u) = c'" - um,, [3.15]

The general first-order conditions (Eqs. [3.9]) for the minimization program in
Eqs. [3.3] can now be expressed explicitly as

fk,(Ck - Urs) = 0 V k, r, s [3.16a]

C s- Urs > 0 V k, r, s [3.16b]

frks = q,s V r, s [3.16c]
k

fks V2 O k, r, s [3.16d]

Conditions [3.16c] and [3.16d] are simply the flow conservation and
nonnegativity constraints, respectively. These constraints, naturally, hold at
the point that minimizes the objective function. The following discussion is
focused on the nature of the first two conditions expressed in Eqs. [3.16a] and
[3.16b]. These conditions hold for each path between any O-D pair in the
network. For a given path, say path k connecting origin r and destination s,
the conditions hold for two possible combinations of path flow and travel
time. Either the flow on that path is zero (i.e.,f s = 0 and Eq. [3.16a] holds), in
which case the travel time on this path, c s, must be greater than or equal to
the O-D specific Lagrange multiplier, u,s (as required by Eq. [3.16b]); or the

�_
- ~ ~ _ __ - 1 __

65

Part II User Equilibrium

flow on the kth path is positive, in which case c = urs and both Eqs. [3.16a]
and [3.16b] hold as equalities.t In any event, the Lagrange multiplier of a
given O-D pair is less than or equal to the travel time on all paths connecting
this pair. Thus Urs equals the minimum path travel time between origin r and
destination s.

With this interpretation, it is now clear that Eqs. [3.16], in fact, state the
user-equilibrium principle. The paths connecting any O-D pair can be divided
into two categories: those carrying flow, on which the travel time equals the
minimum O-D travel time; and those not carrying flow, on which the travel
time is greater than (or equal to) the minimum O-D travel time. If the flow
pattern satisfies these equations, no motorist can be better off by unilaterally
changing routes. All other routes have either equal or higher travel times. The
user-equilibrium criteria are thus met for every O-D pair.

The equivalence between the UE conditions and the first-order con-
ditions of program [3.3] means that the UE conditions are satisfied at any
local minimum or, in fact, at any stationary point of this program. Accord-
ingly, this program is usually referred to as the UE program or the UE
equivalent minimization. The next section shows that the UE program has
only one stationary point, which is a minimum.

3.3 UNIQUENESS CONDITIONS

In order to show that the UE equivalent minimization program has only one
solution, it is sufficient to prove that objective function [3.3a] is strictly convex
in the vicinity of x* (and convex elsewhere) and that the feasible region (de-
fined by constraints [3.3b] and [3.3c]) is convex. The convexity of the feasible
region is assured for linear equality constraints, as mentioned in Section 2.3.
The addition of the nonnegativity constraints does not alter this characteristic.
The focus of this section, then, is on the properties of the objective function.

The convexity of the objective function is proved here with respect to
link flows; path flows are treated later. This section demonstrates that the
function

X
z(x) = E ta(o) do

is convex under the aforementioned assumptions on the link performance
functions (namely, that t,()/Oxb = 0 for a $ b and dta(xa)/dXa > 0, V a-see
Eqs. [3.5]). This is done by proving that the Hessian [the matrix of the second
derivatives of z(x) with respect to x] is positive definite, thus ensuring that z(x)
is, in fact, strictly convex everywhere.

The Hessian is calculated by using a representative term of the matrix.

tAll this holds at the minimum point (the solution of the minimization program); recall
that the asterisks are omitted from Eqs. [3.16] for presentation purposes only.

.--X-C- I I�-·I ------ --- · 111 -�--�----------- -- · ·--- (·llllllillC ------

66

Chap. 3 Formulating the Assignment Problem as a Mathematical Program

The derivative of z(x) is therefore taken with respect to the flow on the mth
and nth links. First,

az(x)
(Xtm (- t=(x.)

as in Eq. [3.12a], and second,

a2 Z(X) Otm(Xm) _ x for m = n

axm ax, xo [3.17]
O otherwise

because of condition [3.5a]. This means that all the off-diagonal elements of
the Hessian, V2z(x), are zero and all the diagonal elements are given by
dta(xa)/dxa. In other words,t

V2z(x) =

dtl(xl)
dxl

dt2(x 2) ...

dx2

O '

dtA(xA)

dA

[3.18]

This matrix is positive definite since it is a diagonal matrix with strictly posi-
tive entries (all entries are positive because of condition [3.5b]). The objective
function is thus strictly convex, and since the feasible region is convex as well,
the UE program has a unique minimum.

This result means that there is only one flow pattern that minimizes
program [3.3]. As shown in the last section, this minimum is a user-
equilibrium flow pattern and consequently, the UE flow pattern can be found
by minimizing this program.

The strict convexity of the UE program was established above with
respect to the link flows. This program, however, is not convex with respect to
path flows and, in fact, the equilibrium conditions themselves are not unique
with respect to path flows. This point is demonstrated in the simple network
example depicted in Figure 3.4. The network includes two origin-destination
pairs connected by two paths each, as shown in the figure. The figure also
depicts the link performance functions and the O-D trip rates (q15 = 2 and
q25 = 3).

The equilibrium link flows for this example are given by x = 2, x2 = 3,

tNote that Eq. [3.18] is the Jacobian of the link-travel-time vector, t, with respect to the
link flows, x. The Jacobian matrix of a given vector is the matrix of first derivatives of each of the
vector components with respect to the arguments of these components.

___~ _I�_ _____ I

67

Part II User Equilibrium

LE0°] i
022 ~~~~~~~ II ~~5

l
I in V"'. / D.Ivv Nth nibr

Curves

t=
t 2- 2
t 3- 2 x3
t4- 1 ' 2x4
t5- 1

O-D Trip Rates

q_- 2

q 2 5 3

Equilibrium Flows:
32-

c 1 tl[xl] t3x 3]* t5(x5 1 3(2.3).1 7

c2
5

= tl[xl) t4(x4] 1 t[x5 = 1 (1. 2 2 .1 -I 7

c 5 = t2[x2)+ t3(x3) t5(x5] .2 (2+3] 1 = 8

c
2 5

. t2(x2) t 4(X4]) t5(1 2 * 22) * 1 - 8

Figure 3.4 Equilibrium flows and path travel times in a network with two O-D
pairs and five links.

x3 = 3, x4 = 2, and x = 5, as shown in Figure 3.4. These equilibrium flows
can be achieved by many combinations of path flows; for example:

f5 =0 , f 5 =2, f25= 3, and f25 =
or

f5 = 2 5 = 0, f25 = 1, and f25 = 2

Both these path-flow patterns generate the same link-flow pattern shown in
Figure 3.4. In fact, any path-flow pattern that satisfies

f1 5 = 2a, f5 = 2(1 -), f25= 3 - 2, and f25 = 2a

for any value of a such that 0 < a < 1 will generate the equilibrium link-flow
pattern in this example. Thus there are, in principle, an infinite number of
equilibrium path flows.

The convexity of the UE equivalent minimization program with respect
to link flows can be established without analyzing the Hessian of z(x), by
making use of the properties of convex functions. The objective function of the
UE minimization consists of a sum each element of which is an integral of an
increasing function. Such an integral is always strictly convex (prove it) and
the sum of strictly convex functions is always strictly convex. Thus z(x) is a
strictly convex function which has only one minimum. This point is also the

O-D 1 5.
Path 1

O-D 1 -5,
Path 2

O-D 2 5,
Path 1

O-D 2-5,
Path 2 _

r�C---··�·C- - ---- IC· I ·- I -Y

68

I .1

Chap. 3 Formulating the Assignment Problem as a Mathematical Program

user-equilibrium solution for the network, as shown by the first-order con-
dition.

The next two chapters focus on solution algorithms for convex mini-
mization problems in general and the UE program in particular. Before dis-
cussing these algorithms, however, the next two sections of this chapter deal
with some related minimization programs.

3.4 THE SYSTEM-OPTIMIZATION FORMULATION

As mentioned in Section 3.1, the UE minimization program is a mathematical
construct that lacks an intuitive interpretation. It is merely an efficient method
for solving the user equilibrium equations. These equations describe the flow
pattern resulting from each motorist's choice of the shortest travel-time route
from origin to destination.

This section examines a related minimization program including an ob-
jective function that has a straightforward interpretation and is subject to the
same constraints as the UE equivalent program. The objective function of this
program is the total travel time spent in the network. The flow pattern that
solves this program minimizes this objective function while satisfying the flow
conservation constraints (i.e., all the O-D trip rates are assigned to the net-
work). This program can be expressed as follows:

min z(x) = x t(xa) [3.19a]
a

subject to

2fk = qrs V r, s [3.19b]
k

f 0 V k, r, s [3.19c]

As in the UE program, the objective function is formulated in terms of link
flows while the constraints are formulated in terms of path flows.

Program [3.19] is known as the system-optimization (SO) program. The
flow pattern that minimizes this program does not generally represent an
equilibrium situation. Except in special cases, it can result only from joint
decisions by all motorists to act so as to minimize the total system travel time
rather than their own. In other words, at the SO flow pattern, drivers may be
able to decrease their travel time by unilaterally changing routes. Such a
situation is unlikely to sustain itself and consequently the SO flow pattern is
not stable and should not be used as a model of actual behavior and equilibri-
um. (The only cases in which the SO flow pattern can be used to represent
equilibrium are those special cases in which the SO solution is identical to the
UE solution.)

The significance of the SO formulation and the resulting flow pattern is
that the value of the SO objective function may serve as a yardstick by which

__��_� __

69

Part II User Equilibrium

different flow patterns can be measured. Indeed, total (systemwide) travel time
is a common measure of performance of a network under a given scenario (see
Section 1.1). This measure can be computed in a straightforward manner given
the equilibrium flows, and it does not require any data in addition to those
required for the equilibrium analysis itself. Thus the flow pattern associated
with any proposed project can be measured in terms of the total travel time
associated with it relative to the minimum possible total travel time. By defini-
tion this minimum is obtained by solving the SO program.t

The necessary conditions for a minimum for the SO program are given
by the first-order conditions for a stationary point of the following Lagrangian
program:

L(f, i) = z[x(f)] + E s(q. - ~ f s) [3.20a]

where (f,) has to be minimized with respect to f, subject to the set of
nonnegativity conditions

fs > 0 V k, r,s [3.20b]

The variable it, is the Lagrange multiplier (or the dual variable) associated
with the flow conservation constraint of O-D pair r-s (Eq. [3.19b]). The
first-order conditions for a stationary point of Eqs. [3.20] are (see Eqs. [3.9])

frs 0L(f,) OL(f, i)
ftafrs) =0 and 2a(f, > 20 V k, r, s [3.21a]af~ af

as well as

- 0 V r, s [3.21b]

and

f's 2 O V k, r, s [3.21c]

Again, the asterisks denoting the optimal solution in terms of f* and ui* have
been omitted from these equations, as in Eqs. [3.9].

As in the case of the equivalent UE program, conditions [3.21b] and
[3.21c] simply restate the flow conservation and nonnegativity constraints,
respectively, and are therefore not discussed further. Conditions [3.21a] can be
expressed explicitly by deriving the partial derivatives of the Lagrangian with
respect to the path flows. These derivatives are given by

aL(f,) a a
af - fy"n [x(f)] + af i,,, - fs V m, n, I [3.22]

The partial derivative of Lagrangian [3.22] consists of two terms, which

tin addition, the SO program is used as a bound in many mathematical programs dealing
with network design.

70

Chap. 3 Formulating the Assignment Problem as a Mathematical Program

are calculated separately below. The second term is similar to the second term
of Eq. [3.10] and therefore (see Eq. [3.14])

f Ur s f = -. ,, 1V m, n [3.23]

The first term on the right-hand side of Eq. [3.22] includes the partial
derivative of the SO objective functions with respect to the flow on path
between origin m and destination n. This derivative is given by

a ai(x) ax, a(x)

= E m a E Xa ta(Xa)

= b, l[tb(Xb) + Xb dx V 1, m, n [3.24]

This derivative can be interpreted, intuitively, by letting

dta(xa)
ta(Xa) = ta(Xa) + Xa dx V a

dX,

The travel time ta can be interpreted as the marginal contribution of an
additional travelert on the ath link to the total travel time on this link. It is
the sum of two components: ta(Xa) is the travel time experienced by that
additional traveler when the total link flow is a, and dta(Xa)/dXa is the ad-
ditional travel-time burden that this traveler inflicts on each one of the trav-
elers already using link a (there are Xa of them). Using the new travel time
variable, ta, Eq. [3.24] can be written as

[T zx(f)] = E '"" tb
b

= cm" ' 1, m, n [3.25]

where j7'n is interpreted in a fashion analogous to ta. It is the marginal total
travel time on path connecting O-D pair m-n.

The first-order conditions for the SO program can now be written as

n ,,) = 0 V, m, n [3.26a]

cn -_ rn 20 V 1, m, n [3.26b]

E f mn = qmn V m, n [3.26c]

f1'" 2 0 V , m, n [3.26d]

tMore accurately, an additional infinitesimal flow unit.

_ ___ __ _�I __ __

71

Part II User Equilibrium

Equations [3.26a] and [3.26b] state that, at optimality, the marginal total
travel times on all the used paths connecting a given O-D pair are equal. This
result is reminiscent of classical optimization results in which the marginals of
the functions minimized have to be equal at the solution point. The flow on a
given route is zero only if the marginal total travel time on this route is greater
than or equal to the marginal total travel time on the used routes. The value of
the dual variable umn, at optimality is the marginal travel time on all the used
paths between m and n.

For the solution of the program SO to be unique, it is sufficient to show
that the Hessian of 5(x) is positive definite. A typical term of this Hessian can
be obtained by taking the derivative of the objective function with respect to
xm and x, that is,

aix) a
(~b)a=- Xa ta(Xa)aXb axb a

dtb(xb)= tb(Xb) + Xb dbb
dxb

and

[dta(Xa) d
2

ta(
2 azaxx) + x for b =a

8
Xb Xa d x dVx v a, b [3.27]

0 otherwise

As in the UE program, this result represents a diagonal Hessian with the
nonzero terms a2z(x)/ax2 given by Eq. [3.27]. This Hessian is positive definite
if all those terms are positive, which is the case if all the link performance
functions are convex. All performance functions dealt with in this text have the
general shape shown in Figure 3.2, which is convex, and thus dt2(Xa)/dX2 >
and the diagonal terms are positive. Consequently, the SO program has a
unique minimum in terms of link flows.

The next section compares some aspects of the SO problem to the UE
program in order to illustrate the nature of the corresponding flow patterns.

3.5 USER EQUILIBRIUM AND SYSTEM OPTIMUM

It is interesting to note that when congestion effects are ignored, both UE and
SO programs will produce identical results. Imagine a network where ta(Xa) =
t' . In other words, each link travel time is not a function of the flow on that
(or any other) link. In this case, the SO objective function would be

.is�-� -rrr�--�F·-· ,- -·----·---�-·I--------- --- IUI

72

X) = ta
a

[3.28a]

Chap. 3 Formulating the Assignment Problem as a Mathematical Program

and the UE objective function

z(x) = Ea t do

= E Xata [3.28b]
a

which is identical to the SO objective function, (x).
Minimizing the objective function shown in Eqs. [3.28] subject to the

flow constraints [3.19b] and [3.19c] is an easier task than solving either the
SO or UE problems. The reason is that in this case the link travel times are
not a function of the link flows, whereas, in general, both the SO and UE
problems assume that ta does vary with Xa. The problem here is to find the
flow pattern that minimizes the total travel time over the network, given the
(fixed and known) values of the link travel times and the O-D matrix. The
solution of this problem is conceptually straightforward-all the flow for a
given O-D pair r-s, q,s, is assigned to the minimum-travel-time path connec-
ting this pair. All other paths connecting this O-D pair do not carry flow.
Consequently, this traffic assignment procedure is known as the "all-or-
nothing" assignment. The resulting flow pattern is both an equilibrium situ-
ation (since no user will be better off by switching paths) and an optimal
assignment (since the total travel time in the system is obviously minimized).

The study of this special case is important in the development of solution
algorithms for the more general problem of equilibrium assignment. This
study is undertaken in Chapter 5, while the remainder of this section deals
with both the UE and SO formulations.

The similarity in the structures of the SO and UE programs can be
expressed in various ways. For example, if the travel times over the network
are expressed in terms of ta(xa), the solution of the UE program with these
travel times will produce an SO flow pattern. Similarly, the SO formulation
with link travel-time functions given by

ta(xa) =X- ta(Wo) dc) [3.29]
XaJO

will result in a UE flow pattern (see Problem 3.10).
In cases in which the flow over the network is relatively low, the network

links are not congested. The marginal travel time on each link, at this point, is
very small due to the shape of the link performance functions (see Figure 3.2);
the slope of this function is very small for low flow. In this case, the UE and
SO flow patterns are similar since the travel times are almost insensitive to
additional flows. The situation, then, is close to the fixed-travel-time case
described in Eqs. [3.28].

As the flows between origins and destinations increase, the UE and SO
patterns become increasingly dissimilar. Large flows mean that some links
carry an amount of flow which is near their capacity. In that range the margin-
al travel time, ta(xa), becomes very large though the travel time itself remains

--- -.-

73

Part II User Equilibrium

EI Freeway

1 City Street

t

Figure 3.5 User equilibrium and system
optimization. The UE solution to the

mini two-link network equilibrium problem
(with x* = 0 and x = a) is not a syvstem

d t2(q] optimizing solution since t(x*) +
dx 2 x* dt(x*)/dx, # t2 (x*) + x2 dt2(X2)/dx2.

bounded. Thus the differences between solving the same problem with the set
of marginal travel times {ta}, versus solving it with the travel times themselves,
{ta}, increase as the network becomes more congested.

To understand this better, consider the network example shown in
Figure 3.5. This network includes one O-D pair connected by two links
(paths). Assume that the top link (number 1 in the figure) is a freeway, while
the other link represents a city street. Hypothetical performance curves for
such links are shown in the figure. If the total O-D flow is q, the UE solution
will be the one shown in the figure with x = 0 and x2 = q. In this case,
t2(q) < t(O), and no user will choose to travel on the freeway. Note, however,
that the derivative of t2(x2) at x = q, dt2(q)/dx 2 , is relatively large and it is
therefore possible that t(O) < t2(q). In other words, this solution is not optimal
from the system perspective. The SO solution to this problem may include
some flow using the top route as well. If one driver shifts from route 2 to route
1 (at the UE flow pattern shown in the figure), his or her own travel time will
increase-the driver will experience t(0) instead of t2(q). The travel time ex-
perienced by each of the remaining drivers on route 2 will, however, decrease
by dt 2(q)/dx 2. Thus, from the system perspective, an increase of t1(0) - t2(q)]
may be more than offset by a decrease of (q - 1) dt2(q)/dx 2 . The SO flow
pattern is achieved only when

dtl(x) dt2(x2)
tl(xl) + x, t2(x2) + x 2 [3.30]

dx 2 dx2

(Problem 3.12 includes a numerical example intended to demonstrate this

[mi

tl
t2

t2 (

··

74

Chap. 3 Formulating the Assignment Problem as a Mathematical Program

point.) Note that flow should still be treated as a continuous quantity; the
mention of an integer flow unit (one driver) above was made only to explain
the concept.

A failure to realize the fundamental difference between the normative SO
flow pattern and the descriptive UE flow pattern can lead to pseudo-
paradoxical scenarios. The most famous of these is known as "Braess's para-
dox," which is described below.

Figure 3.6a depicts a simple network including one O-D pair connected
by two paths and four links. The figure shows the two paths (numbered 1 and
2) and the congestion curves for each of the four links. Assume that 6 units of
flow are to travel between O and D (i.e., q = 6). The user equilibrium flow
pattern can be solved for this network by inspection (due to the travel time
symmetry between the paths). Obviously, half the flow would use each path
and the solution would be

f, = 3, f2 = 3 flow units

or, in terms of link flows,

x, = 3, x2 = 3, x 3 = 3, x 4 = 3 flow units

The associated link travel times are:

t = 53, t 2 = 53, t3 = 30, t4 =30 time units

and the path times are

cl = 83, c2 = 83 time units

in accordance with the UE criterion. The total travel time on the network is
498 (flow. time) units.

Assume now that the local transportation authority decides to expand
the transportation network in order to improve flow and reduce delay (as well
as save energy and reduce pollution). This is to be accomplished by building a
new highway connecting the two intermediate nodes as shown in Figure 3.6b.
The figure shows the added (fifth) link, the performance function for this link,
and the new path (number 3) generated as a result of the link addition.

The old UE flow pattern is no longer an equilibrium solution since under
that flow pattern

x, = 3, x 2 = 3, X 3 = 3, x 4 = 3, X 5 =0 flow units

with path travel times

cl = 83, c 2 = 83, c 3 = 70 time units

The travel time on the unused path (number 3) is lower than the travel time on
the two used paths, meaning that this cannot be an equilibrium solution. An
equilibrium flow pattern for the new network is given by the solution

x, =2, x2 = 2, x3 =4, X4 =4, x 5 =2

! - a _ . _ _ . . I _

75

flow units

1
q

Performance Data

tl(x 1] = 50 + xl
t2(x2) = 50 + X2
t3(x 3) = 10x3
t4 (x4 = 10x4

q=6

Path Definition

Path 1

Path 2 II'% '

User Equilibrium Solution

+

+ +I?

)=6

Added link t5= 10 x 5

Added path: fi 4
pah:j~, [~ -

one flow0 " vi- unit shifts
from path 1
to path 3

C1 = 83

C2 = 83
C3 = 70

' 5.~ ' one flow
"O"- unit shifts

from path
to path 3

C1 = 82
C2 = 93
C3 81

Figure 3.6 Braess's paradox example: (a) a user-equilibrium solution for a four-
link network (link numbers are shown in the squares); (b) an additional link creates
a UE solution with higher individual and total cost.

76

(a)

q=6 C
0.- (b)

C1 = 92
C2= 92
C*= 92

.

- arrrr� I --- -- e �

Chap. 3 Formulating the Assignment Problem as a Mathematical Program

with path flows

fl =f2 =f3 = 2 flow units

and path travel times

c1 = C2 = C3 = 92 time units

Figure 3.6b depicts a possible sequence of assignment of flow units that would
generate this equilibrium from the old one.

The important point to note here is that the total travel time in the
network is now 552 (flow time) units as compared to 498 (flow time) units
before the link addition. Not only did the total travel time go up, but the
travel time experienced by each traveler in the network increased from 83 time
units to 92 time units. The additional link seems to have made the situation
worse-congestion and delays increased instead of decreasing. This (seemingly)
counter-intuitive result is known as Braess's paradox.

This "paradox" can, of course, be readily explained. The increase in
travel time is rooted in the essence of the user equilibrium, where each motor-
ist minimizes his or her own travel time. The individual choice of route is
carried out with no consideration of the effect of this action on other network
users. There is no reason, therefore, to expect the total travel time to decrease.

Looking at it from a mathematical programming point of view, the
supply action (adding a link) was taken with the intention of reducing the SO
objective function. The flow, however, is distributed according to the UE
objective function, so the resulting pattern does not necessarily reduce the SO
objective function. Had the flow before and after the link addition been as-
signed according to the SO objective function, the total travel time could not
have increased with the addition of the new link. (Prove it.) Note that the
value of the UE objective function did go down from a value of 399 before the
link addition, to a value of 386, after the link addition.

From a more general perspective, Braess's paradox underscores the im-
portance of a careful and systematic analysis of investments in urban net-
works. Not every addition of capacity can bring about all the anticipated
benefits and in some cases, the situation may be worsened. In fact, traffic
engineers have known for a long time that restrictions of travel choices and
reductions in capacity may lead to better overall flow distribution patterns.
This, for instance, is the underlying principle behind many traffic control
schemes, such as ramp metering on freeway entrances.t

tRamp metering is the process of restricting the entry of flow onto a freeway, usually by
installing a traffic light at the entrance ramp. This light controls the number of cars allowed to
enter the freeway during certain times of the day (typically, the peak traffic period). In other
words, it effectively lowers the capacity of one of the network links (the ramp). The metering
causes drivers to use alternative routes by raising the travel time associated with the freeway
entrance. This reduction in capacity leads to better overall conditions and lower total delay
compared with the situation associated with no controls.

l
_ __ · -

77

Part II User Equilibrium

3.6 SUMMARY

The focus of this chapter is on the formulation of the traffic assignment prob-
lem as a mathematical program. This program is given by Eqs. [3.3]. To
demonstrate that the solution of this program is equivalent to the solution of
the UE conditions, it is shown that the equilibrium equations are, in fact, the
first-order conditions of the program. This guarantees that the equilibrium
conditions hold at any stationary point of the program. Next, it is shown that
this program is strictly convex, meaning that it has only one stationary point
which is a minimum. All this proves that instead of solving the equilibrium
equations directly, the equilibrium flows can be determined by minimizing the
equivalent mathematical program. This approach to the solution of equilib-
rium problems is adopted throughout this book.

The nature of the user equilibrium and its equivalent minimization pro-
gram are illustrated in this chapter by contrasting this formulation with the
system-optimization formulation. The SO formulation calls for the flow pat-
tern that minimizes the total travel time in the system. It is generally not an
equilibrium flow pattern, since under it some travelers can be better off by
unilaterally changing routes. It represents, however, the flow pattern for which
the total systemwide travel time is the lowest. The difference between the UE
equivalent minimization and the SO program is that the former is devised to
describe motorists' behavior, whereas the latter is normative in nature. A
failure to understand these differences may lead to "paradoxical" situations
when travel choices are added to the network but all users are made worse off.
Such situations highlight the noncooperative behavior represented by the user
equilibrium.

3.7 ANNOTATED REFERENCES

The formulation of the user-equilibrium problem as a mathematical pro-
gram was first developed by Beckmann et al. (1956), who proved the equival-
ency and the existence and uniqueness of the solution. Boyce (1981), in an
editorial note, traces the historical development of the concept of equilibrium
assignment, including many algorithms and problem formulations. The differ-
ences between the user-equilibrium and system-optimizing flow patterns over a
transportation network are discussed by Potts and Oliver (1972) and Newell
(1980), from whom the example shown in Figure 3.5 was taken. The paradox
presented in Section 3.5 was discussed and explained by Murchland (1970)
following Braess (1968). A case in which this phenomenon actually took place
is reported by Knodel (1969). Newell (1980) pointed out the evident nature of
this phenomenon in the context of standard traffic engineering practice.

I�

78

Chap. 3 Formulating the Assignment Problem as a Mathematical Program

3.8 PROBLEMS

3.1. Consider the network in Figure P3.1. It includes two O-D pairs (1 - 4 and 2--- 4)
and five links. (The link numbers are shown on the respective links.) Devise a
numbering system for the paths and identify the values of all the indicator vari-
ables. Write the link-path incidence matrix for this network. Use this matrix to
get x 3 from f.

Figure P3.1

3.2. Solve the network example in Figure 3.3 by setting up the equivalent mini-
mization and by using Lagrange multipliers. Comment on the value of the multi-
pliers at the solution point.

3.3. Find the user-equilibrium flow and travel times for the network shown in Figure
P3.2, where

tl = 2 + x2

t2 = 3 + x2

t3 = 1 + 2x23

t4 = 2 + 4x 4

(The link numbers are shown on the respective links.) The O-D trip rate is 4 units
of flow between nodes 1 and 3.

1 3

Figure P3.2

3.4 Solve for the equilibrium flows in the network example depicted in Figure 3.4. Set
up the UE program and solve the first-order conditions.

*3.5. (a) Express the Hessian of the UE objective function in terms of path flow over
the network depicted in Figure 3.4. Show that it is not a positive-definite
matrix.

(b) Show that the path-flow Hessian of the UE objective function is usually not a
positive-definite matrix. For what type of network will this Hessian be posi-
tive definite?

3.6. Show that the integral of an increasing function is always a convex function.
3.7. Find the system-optimizing flow pattern for the network example in Figure 3.3.

I· _________ _ _ _�_ ___ _ ___

79

Part II User Equilibrium

Compare this flow pattern to the UE flow pattern and comment on the differ-
ences.

3.8. Find the system-optimizing flow pattern for the network example discussed in
Problem 3.3. Compare it to the UE flow pattern.

3.9. Does the SO program have a unique solution in terms of path flows? Explain
your answer.

3.10. (a) Show that the solution of the SO program with travel times t(x.) (see Eq.
[3.29]) is an UE flow pattern.

(b) Show that the solution of the UE program with travel times t'(xa) (see Eq.
[3.24] and the definition that follows) is an SO flow pattern.

3.11. Show, analytically, that as the flows over the network become smaller (and con-
gestion decreases), the SO flow pattern tends to grow in similarity to the UE flow
pattern.

3.12. Consider the network of two routes (a freeway and a city street connecting one
O-D pair) shown in Figure 3.5. Let

t = 3 + 0.5x

t2 = 1 + X2

q= 1.5

(a) Find the UE solution and demonstrate that it is not an SO solution.
(b) Find the SO solution and demonstrate that it is not an UE solution.

3.13. Solve for the system-optimizing flow pattern over the network depicted in Figure
3.6 before and after the link addition. Show that the total travel time decreases.
Explain why the total travel time would never increase if a link is added and the
flow pattern follows the SO rule.

3.14. Assume that a transportation planner can set a toll on each one of the paths
connecting the origins to the destination shown in Figure P3.3.

Fieure P3.3

(a) Given that the O-D flow is q and the performance function on each link is
ta(xa), how should the tolls be set so that the total travel time in the network
is minimized?

(b) Assuming that the link performance functions are linear, derive a closed-form
expression for these tolls.

(c) Comment about the feasibility of this approach in real urban networks.

80

4

This chapter describes some of the most common minimization algorithms. It
is not a comprehensive review, but rather a presentation of methods that are
applicable to the solution of minimization programs of the type formulated in
this text as well as methods that bring out some important principles. The
discussion deals separately with the minimization of a function of a single
variable and the minimization of multidimensional functions.

The focus of the discussion is on the mechanics of the algorithms and,
therefore, proofs of convergence are not given explicitly. Such proofs can be
found in most of the nonlinear programming books mentioned at the end of
this chapter. The last section is devoted exclusively to one algorithm-the
convex combinations method. This algorithm is the basis for solving many
equilibrium problems.

4.1 ONE-DIMENSIONAL MINIMIZATION

This section deals with the minimization of a nonlinear function of a single
variable, z(x). The regularity conditions mentioned in Chapter 2 are still as-
sumed to hold; that is, it is assumed that x lies within some finite interval
[a, b] and that z(x) is continuous and uniquely defined everywhere in that
interval. These requirements ensure the existence of a finite minimum of z(x)
for some x in the interval of interest. For the purposes of this discussion it is
assumed that z(x) is ditonic over the interval [a, b], implying that it has only a
single, unique minimum in that interval.

81

�___ I _� 1111_� 1_ i CIIII~-· III~--· C-----

w

Part II User Equilibrium

The study of one-dimensional optimization methods is important mainly
because such an optimization (or line search) is in many cases a part of an
algorithm designed to find the minimum of multivariate functions. Fur-
thermore, some of the principles imbedded in the algorithms described below
are used in minimizing multivariate functions as well.

This section includes two basic approaches to single-dimensional mini-
mization. The first is known as interval reduction and includes the golden
section and the bisection methods. The second utilizes quadratic curve fitting
and includes Newton's search, the false position method, and the quadratic
approximation method.

Interval Reduction Methods

Interval reduction methods involve iterative procedures in which each
iteration is focused on a current interval. The current interval in the nth
iteration is a portion of [a, b], denoted [an, b], which was determined to
include the minimum point, x*. At each iteration this interval is examined and
divided into two parts: the part in which the minimum cannot lie and the
current interval for the next iteration. The part in which the minimum cannot
lie is discarded and the procedure is repeated for the new current interval.
These procedures start by designating [a, b] as the first current interval (i.e.,
a° = a and b° = b). The interval is then reduced at each successive iteration
until a good approximation (a small enough current interval) for x* is ob-
tained.

To understand this reduction process better, let the size of the current
interval at iteration n be denoted by I and let r, = I,,+ 1n denote the interval
reduction ratio for the nth iteration. Since there is no reason to believe that
any of these algorithms would work better (in terms of interval reduction) in
any given iteration, the reduction ratio is usually a constant, (i.e., r = r for
every n).

Interval reduction algorithms are typically terminated when the size of
the interval of interest is less than a predetermined constant. The estimate of
x* is then the midpoint, , of the interval remaining after N iterations, IN [i.e.,
x = (aN + bN)/2]. If the optimum has to be estimated with a tolerance of +E
(i.e., x* must lie within + E), then the number of required iterations can be
calculated as a function of the length, I,, of the initial interval (see Problem
4.1). The number is

N = INT log 2E - log Io + [4.1]
logr

where INT [] means the integer part of the argument.
The various interval reduction algorithms differ from each other only in

the rules used to examine the current interval and to decide which portion of it
can be discarded.

II� -- s ---- rrrrr�------ - �----·-, -- _I_.�

82

Chap. 4 Review of Some Optimization Algorithms

Golden section method. The interval reduction strategy of the
golden section search is based on a comparison of the values of z(x) at two
points, x and x (where x[< x). These points are within the interval of
interest [an, b] at the nth iteration. The choice rule for selecting the interior
points is the unique feature of this method; it is explained below, following an
explanation of the interval discarding process.

The discarding mechanism is demonstrated in Figure 4.1, depicting a
ditonic function, z(x), which has to be minimized in the interval [an, bn]. The
top drawing (denoted "iteration n") shows the two interior points at the nth
iteration xL and x. In this case, z(x2) > z(x). Since the function is ditonic, the
optimum must lie "to the right" of xL (i.e., x* > x), and thus the interval
[an , Xj] can be discarded. This completes the nth iteration. The new current
interval [for the (n + 1)st iteration] is [a"+ l , b+1], where a"+' = and
b"+

1 = bn. The interval reduction process continues with two new interior
points, xl +1 and x"+1, as shown in the bottom drawing of Figure 4.1 (labeled
"iteration n + 1 "). Note that if the function was such that z(x) was greater
than z(xl), then the interval [xh, bn] would have been discarded at the nth
iteration. This is the case in iteration n + 1, where z(xlt +) < z(xh+'). In this
case the interval [xR+ , b"+1] is discarded and the new current interval is
[an+ 1, x"+ 1] (since x* cannot be "to the right" of xn+

1).

The essence of the golden section method is in the rule used for choosing
xL and x, given an interval [an, b]. This rule is designed to minimize the
number of function evaluations. Given a new current interval the algorithm

Iteration

Iteration
n+ 1

Figure 4.1 The interval reduction se-
quence followed by the golden section
method.

l --
�--- �-II

83

X

Part II User Equilibrium

needs two interior points to continue. The golden section procedure makes use
of one of the interior points from the last interval (where the function value is
already known). Only one new point where the function value needs to be
evaluated is therefore added at each iteration.

This arrangement is illustrated in Figure 4.1, where, when going from the
nth to the (n +)st iteration, only one interior point has to be added and
evaluated (x+l' in the bottom drawing); the other is available from the nth
iteration since x + = x [so z(x +1) need not be evaluated because it equals
z(x)]. Such a sequence of interior points can be obtained, while keeping a
constant reduction ratio, by using r = 0.618 [more precisely, r = (/5 - 1)].
Accordingly, the interior points are selected so that xn is 0.618 of the interval
length to the right of a" and xL is 0.618 of the interval length to the left of b"
(or 0.382 of the interval length to the right of an). The quantity (/5 - 1) is
known as the "golden section," from which the method derives its name.

Note that such a sequence of intervals leads to a situation in which

In = In+ 1 + In+2 [4.2]

as shown in Figure 4.1 (see Problem 4.2).
A flowchart of the algorithm is presented in Figure 4.2.t This algorithm

takes as input the function to be minimized, the interval end points, and the
accuracy required. The output includes the estimate of the optimum, x, the
number of iterations performed, N, and the accuracy actually obtained,
(bN - aN). Note that given r thae number of iterations needed to achieve a

given degree of accuracy, can be determined a priori by using Eq. [4.1].
A well-known search method similar to the golden section is the Fibon-

acci algorithm mentioned in the references given in Section 4.5. It is slightly
more efficient than the golden section procedure, due to better positioning of
the first two interior points. From a practical point of view, however, the small
advantage offered by this algorithm does not justify its detailed study (see
Problem 4.5) herein.

Bisection method. In many cases, the derivative of the function to
be minimized can be evaluated easily and the search for the minimum can
therefore be expedited. The method of interval bisection exploits the fact that a
ditonic function is monotonic on each side of the minimum. In other words,
the derivative of the function to be minimized, dz(x)/dx, is negative for x < x*
and positive for x > x*.

The algorithm computes the derivative of z(x) at the midpoint of the
current interval, [an , bn]. Denote this point by x. If dz(x")/dx < 0, then x* >
:x", meaning that the interval [an, x"n] can be discarded. The next current inter-
val will thus be [xn, bn]. If dz(xn)/dx > 0, then x* < gn, and the search can

tThe notation ":=" used in the figure indicates the equality sign in programming
languages (i.e., the assignment of a variable's value). For example, n:= n + 1 means an increment
of the counter n by 1.

-41 ·r -C- I 1L~-- � -- I I UI

84

Chap. 4 Review of Some Optimization Algorithms

Input

Figure 4.2 Flowchart of the golden section algorithm.

focus on the interval [a", x"]. Figure 4.3 depicts a flowchart of the bisection
method (known also as Bolzano search).

As with the golden section method, a convergence criterion can be speci-
fied, causing the precedure to terminate (the estimate of x* is taken at the
middle of the remaining interval) when this criterion is met. The reduction
ratio for this method is r = 0.5, and Eq. [4.1] can be used to determine the
number of iterations required for a given accuracy. For example, only six

I--- I--- ___ _ _ w

l _ _

85

Part II User Equilibrium

Input

Figure 4.3 Flowchart of the bisection algorithm.

iterations of the bisection method are required to determine the minimum of
z(x) with an accuracy of +1% of the length of the original interval. The
golden section method, by way of comparison, would require nine iterations,
involving 10 evaluations of z(x) to reach this degree of accuracy. Table 4.1
shows the ratio of the length of the current interval and the original interval,
after N function evaluationst for each of the two interval reduction methods
discussed in this section. The table demonstrates that the convergence rate of
the bisection method is almost twice that of the golden section method. The
bisection method requires, however, that the derivative of z(x) be evaluated in
every iteration. This may not be easy in some cases, and thus this algorithm

tNote that the first iteration of the golden section method requires two evaluations of z(x).

'4·Lllll*C----�-··lsI�-�� � ����1� � --·-- ·I·--�--·-� �---�-·--r�-·-·----··-·1--- --

86

Chap. 4 Review of Some Optimization Algorithms

TABLE 4.1 Convergence Rate for Interval Reduction Methods
(IN1/1 versus N for each algorithm)

Number of Size of Current Interval as a Fraction
Function of the Initial Interval

Evaluations,
N Golden Section Bisection

2 0.6180 0.2500
3 0.3819 0.1250
4 0.2361 0.0625
5 0.1459 0.0313
6 0.0902 0.0156
7 0.0557 0.0078
8 0.0344 0.0039
9 0.0213 0.0020

10 0.0132 0.0010

should be preferred to the golden section algorithm only in cases in which the
calculation of the derivative is not much more difficult than calculating the
function itself.

All the interval reduction methods produce, after a given number of
iterations, a final interval [aN, bN] which contains the minimum. If the mini-
mized function is convex, the optimal value of z(x) can be bounded. As men-
tioned in Section 2.1, a linear approximation to a convex function will always
underestimate it. Thus

dz(aN)
z(x*) 2 z(aN) + dx (x* - aN) [4.3a]

and

z(x*) > z(bN) + d) (x* - b) [4.3b]

Since the value of x* is not known, the value of bN can be substituted for x* in
Eq. [4.3a], and aN can be substituted for x* in Eq. [4.3b]. The higher of the
two lower bounds suggested by these linear approximations is a tighter lower
bound for z(x*). Alternatively, the two approximations can be solved simulta-
neously for an even tighter bound.

Curve-Fitting Methods

When the function to be minimized, z(x), is not only ditonic but also
relatively smooth, such smoothness can be exploited by algorithms that are
more efficient than the aforementioned interval reduction methods. Curve-
fitting methods work by iteratively improving a current solution point. The
characteristics of the function at the last point (or points) are utilized to
generate a smooth approximation for z(x). (All the methods described in this

I
_ . - --· --·~~~~~~~~~~~~~~~~~~~~~~~~~~. .

87

Part II User Equilibrium

section use a parabola for this purpose.) The new point is taken to be at the
minimum of this approximation as explained below in the discussion of specif-
ic algorithms. These algorithms differ from each other in the technique used to
generate the approximation of the objective function.

Curve-fitting methods exhibit many of the characteristics of general
minimization methods in that (unlike interval reduction methods) they gener-
ate a series of points x, ... , XN, ... that converge to the minimum, x*. Each
point is generated by applying some algorithmic procedure to the previous
point, and the algorithm terminates when a convergence criterion is met.

The convergence criterion for curve-fitting methods can be based on
various rules. These rules are typically based on the required accuracy of the
solution or on "cost-effectiveness" considerations. For example, the algorithm
can be terminated when the marginal contribution of an iteration to the
improvement in the solution becomes small. In other words, if

Z(x" -) - z(x) < K

where Kc is a predetermined constant (tolerance), the algorithm terminates.
Alternatively, a dimensionless constant based on the relative change between
successive solutions (i.e., [z(x" -) - z(x")]/z(x "-

1) can be used to test for
convergence.t In many cases the algorithms can terminate on the basis of the
change in the variable value (e.g., when I -x"- X I < K' where K' is some
other predetermined constant). The closeness of any particular solution to the
minimum can also be tested by checking the derivative of z(x") at x". If this
derivative is close to zero, the algorithm terminates.

The choice of convergence criterion is based on the function to be mini-
mized, the particular algorithms used, and the context in which the problem is
solved. This point is discussed in later chapters in connection with some
specific problems. The next paragraphs present some of the common curve-
fitting algorithms. As mentioned above these algorithms differ from each other
in the method used to approximate z(x).

Newton's method. Newton's method approximates z(x) at each
iteration with a quadratic fit at the current point, x". The fitted curve, zx), is
given by

dz(x n) 1 d2 z(x") ()2(x) = z(x") + ((x - ") + (2 (x4.4a
dx 2 dX2

This curve, z(x), is a parabola that agrees with z(x) at x" up to second deriva-
tives. The next solution, x" + , is located at the point that minimizes zx) [i.e.,

tThese rules have been devised for descent method, that is, for algorithms in which
z(x) > z(x 2)> ... > Z(X > z(x) > z(x*). While curve-fitting algorithms are not strictly descent
methods (why?), they tend to behave as if they were after the first few iterations, and thus the
convergence criteria above do apply.

-- -- _._� _�__ C

88

Chap. 4 Review of Some Optimization Algorithms

where dz(x)/dx = 0]. This point is given by

Xn+ 1 = X - dz(x")/dx [4.4b]
d2z(x")dx 2

Equation [4.4b] specifies, then, the algorithmic step, that is, the rule by which
x"+ 1 is obtained from x". (Equation [4.4a] is included here only to explain the
basis of this rule; it need not be evaluated when the algorithm is executed.)

Newton's method is very efficient, but it requires, of course, that z(x) be
twice differentiable. It also requires that the first and second derivatives be
evaluated at every iteration. In some cases this may be very costly in terms of
computational effort.

False position method. The false position method is similar to
Newton's search. The only difference is that, instead of using the second de-
rivative at x", it uses the first derivative at x"- and at x" to approximate the
second derivative. The approximation is

d2z(x") dz(x"- l)/dx - dz(x")/dx
dx2 - x _ 1 - [45]

This expression can be substituted for the second derivative in Eq. [4.4b] to
obtain the algorithmic step of the false position method. This method can be
used when the second derivatives are unavailable or difficult to evaluate.

Quadratic fit method. A third curve-fitting method uses no deriva-
tives at all. The quadratic fit is based on three points, xl, x2, and x3. At the
nth iteration, these points are a subset of the series of solution points xl, ... ,
x". As with the other curve-fitting methods, the new solution point is chosen at
the minimum of the fitted curve. This point is given by

I- 1 (X2 - x2)z(x) + (X2 - X)Z(X2) + (X- X)Z(X3) [4.6]
2 (2 - x3)z(x1) + (x3 - x)z(x 2) + (xI - x2)z(x3)

The set of three points used in the next iteration includes x"+l , and the two
points out of xI, x2 , and x3 with the smallest value of z(x). These points are
labeled x1 , x2 , and x3 and the procedure is repeated (see Problem 4.9).

For a given problem, the choice among the various curve-fitting methods
should be guided by the difficulty of calculating the derivatives. If this calcula-
tion can be easily accomplished, Newton's method is the appropriate algo-
rithm, whereas the quadratic fit method is preferred when even the first deriva-
tive is difficult to evaluate. In general, curve-fitting methods are faster than
interval reduction methods when applied to functions that are relatively
smooth. Curve-fitting methods should also be used in cases where the interval
within which the minimum lies is not obvious (e.g., if the function to be
minimized is unconstrained).

i __. �_� _._ ·

89

Part II User Equilibrium

This concludes the discussion of algorithms for minimizing single-
variable functions. The next section describes some approaches to the mini-
mization of multivariable functions.

4.2 MULTIVARIATE MINIMIZATIONt

This section deals with the minimization of a nonlinear convex function of
several variables. The algorithms included here are all descent methods. In
each case, the algorithm generates a point x"+ = (x,+l., , x+) from x" =
(xl, ... , xi), so that z(x"+) < z(x"). The focus of the discussion is on some
principles of minimization. Particular procedures are mentioned only to illus-
trate these principles.$

The core of any algorithmic procedure is the calculation of xn + from x".
This algorithmic step can be written in standard form as

x"+1 = x" + a n d" [4.7a]

where d" is a descent direction vector (dl, ... , do) and a,, is a nonnegative scalar
known as the move size (or "step size"). This formula means that at point x" a
direction in which the function is (locally) decreasing, d", is identified. The
move size, a, determines how far along d" the next point, x+l, will be.§ As
Eq. [4.7a] is executed, each component of the variable vector is updated, that
is,

xi+' = x + cd for i = 1, 2, ... , I [4.7b]

Consider, for example, the function z(xl, x 2) = (xl - 6)2 + 3(x2 - 4)2 de-
picted in Figure 4.4 and assume the current solution to be x = (3, 1). The
dashed line in the figure is a tangent to the contour of z(x) at x". This line
separates the directions of descent at x" from the directions of ascent. The
figure depicts several descent directions (denoted d") emanating from x", and
also shows the direction of the gradient [denoted by Vz(3, 1)] at this point.
The value of z(x) at any point, x, located a small distance away from x" along
one of the descent directions, is smaller than z(x"), the value of the function at
x". Note that the gradient vector is perpendicular to the tangent of the contour
line at x" . Consequently, any descent direction can be characterized by the
inequality Vz d < O0. In other words, the cosine of the angle between the

tReaders who are not interested in the principles of minimization algorithms may skip this
section and go directly to the description of the convex combinations algorithm in Section 4.3.

tProofs of convergence are not within the scope of this text. Several of the references
mentioned in Section 4.4 contain such proofs. In particular, Zangwill's "global convergence
theorem" specifies the necessary and sufficient conditions for algorithmic convergence.

§The term "move size" for an assumes that the direction vector is normalized so that
/d + d2 + .. + d2 = 1. This normalization does not have to be performed in practice, meaning

that the size of the move will actually be the product of a;, and the magnitude of the direction
vector.

90

Chap. 4 Review of Some Optimization Algorithms

Vz(3,1)

Figure 4A Contour lines of z(x,, x2) = (xl - 6)2 + 3(x2 - 4)2 and the range of
descent directions at (xl, x 2) = (3, 1).

gradient direction and the descent direction is always negative. Any direction
vector, d, is a descent direction if and only if this inequality holds.

The magnitude of the step along the chosen direction is determined by
the move size, . If, for example, the chosen direction is d" = (1//, 1/,/), a
move of 3x2 would lead to the optimum in one iteration. (Check this.) If the
descent direction is d" = (0, 1) [pointing straight up from (3, 1)], any step size
that is smaller than . = 6 will cause a decrease in the objective function [as
compared to z(3, 1) = 36]. The minimum value of z(xl, x2) along this direction
is at (3, 4). This point will be attained by using a move size, a, = 3 (verify this
graphically).

The algorithmic iteration described in Eq. [4.7] can be used to summa-
rize all descent methods for unconstrained minimization. These methods differ
mostly in the rule used for finding the descent direction. The move size is
typically chosen so that the objective function is minimized along the descent
direction.

If the function to be minimized is constrained, the minimization algo-
rithms have to be modified so that a desired but infeasible direction can be
changed according to some appropriate rule. Similarly, if the move size leads
outside the feasible region, it has to be truncated so that feasibility is main-
tained.t

The remainder of this section describes some issues related to mini-

tNote that conserving feasibility is not mandatory, and many problems can be solved
without it. The algorithms discussed in this text, though, ensure that the final (optimal) solution is
feasible by ensuring that the entire sequence of solution points is feasible.

l _ - �·_ _____

91

Part II User Equilibrium

mization techniques as well as specific descent algorithms for unconstrained
and for constrained problems. These algorithms contain principles and ideas
that are important to the analysis of network equilibium. The programs to
which these algorithms are applied are assumed herein to be convex (that is,
having a convex objective function defined over a convex feasible region).

Unconstrained Minimization Algorithms

The convergence criteria used to terminate the algorithmic iterations are
an extension of the methods used in one-dimensional search algorithms. For
instance, the convergence criterion can be based on the marginal contribution
of successive iterations, that is, the closeness of z(x") and z(x"-). In other
words, terminate if

[z(x"-l) - Z(X")] < K [4.8a]
Alternatively, the algorithm can be terminated if the elements of the gradient
vector are close to zero, for example, ift

max az(x) < K [4.8b]

In some cases, criteria that are based on the change in the variables between
successive iterations are used. These include, for example,

max I x - - _< K [4.8c]

or

E (X, - x-1)2 < K [4.8d]

In these criteria (Eqs. [4.8]), K is a predetermined tolerance (different for each
criterion) selected especially for each problem based on the desired degree of
accuracy.

The focus of the following discussion is on the commonly used steepest
descent algorithm.

The method of steepest descent. The method of steepest descent
is perhaps the most intuitively logical minimization procedure. The direction
of search is opposite to the gradient direction, while the move size is chosen so
as to minimize z(x) in that direction. This means that each move is made in the
direction in which z(x) decreases (locally) the most (i.e., where the function is
steepest). The length of each move is determined by the points (along this
direction) where the value of z(x) stops decreasing and starts increasing.

tThe notation maxi { } stands for the maximum, over all possible values of i, of the
arguments in the braces.

__ ___ ___ _ ______� _

92

Chap. 4 Review of Some Optimization Algorithms

The basic iteration is given by

xn+ 1 = x" + c. [-Vz(x")] [4.9

where a, is the optimal move size. The gradient can be found either analyti-
cally or, when the derivatives are difficult to evaluate, by using numerical
methods. If Vz(x) can be derived analytically, it has to be supplied as an input
to the minimization routine. Alternatively, it can be computed numerically by
approximating the partial derivative of z(x) with respect to each xi. In other
words,

az(x) z(..., xi- 1, xi + Ax, X ..+) - z(..., xi, . [4.10]
haxe Axi

where Axi is a small interval associated with the ith component of x. The
evaluation of the gradient at x" therefore involves I computations of z(x) in
addition to z(x").

In order to find the value of a,, the function

z[x" + a(-Vz(x"))] [4.11]

has to be minimized with respect to a subject to the constraint that a > 0. The
value of a that minimizes Eq. [4.11] is a,. Finding a, is a one-dimensional
minimization problem that can be solved by using any of the techniques
mentioned in Section 4.1. If the problem is simple (and convex), a, can be
determined analytically by solvingt

d
- z[x" + a(- Vz(x"))] = 0
doe

rather than using a numerical method. Note that the interval reduction meth-
ods mentioned in the preceding section cannot be naturally applied here since
the problem is not constrained and therefore no initial interval exists. Any one
of the curve-fitting methods, however, would be appropriate for this mini-
mization.

The steepest descent algorithm is a descent method, meaning that the
objective function value decreases at every iteration. For objective functions
satisfying certain regularity conditions this method converges to a local mini-
mum, which would naturally be a global one for strictly convex functions.

Figure 4.5 depicts a typical sequence of solutions generated by the steep-
est descent algorithm. An interesting property of this method is that the suc-
cessive search directions are perpendicular to each other, that is, d" d"+ 1 = 0.
This follows from the fact that x" + is located at a point where the rate of
change in z(x) with respect to movement in the direction d" is zero, due to the
optimization in the line search. Thus the gradient (and its opposite direction)
at x + is perpendicular to the direction of d".

For a general quadratic form (the contour lines of which are ellipsoids),

tNote that the point = 0 has to be checked as well.

l I __ __ - - - -

93

Part II User Equilibrium

X2

Figure 4.5 Convergence pattern of the steepest descent algorithm; note the zig-
zagging of the consecutive descent directions.

this "zigzagging" becomes more pronounced as the eccentricity (the ratio of
the axes) increases. On the other hand, if the contours are circular, the steepest
descent method converges in a single step. The zigzagging means that the
steepest descent method requires a relatively large number of iterations. Sev-
eral heuristic procedures to alleviate this problem are suggested in the refer-
ences mentioned in Section 4.5. These methods generally choose a direction
other than the opposite gradient every few iterations.

Other methods. The operations research literature includes many
other minimization approaches including second order methods in which the
search direction is determined by using information regarding the second de-
rivatives of the objective function. Most of these methods are not particularly
applicable to the solution of the problems arising in the course of studying
urban networks. These problems are typically large (i.e., including many vari-
ables), a characteristic that often precludes certain calculations such as the
determination of the Hessian (which is the matrix of second derivatives) or
even approximations of this Hessian. The following paragraphs, then, are
provided mostly for completeness.

One of the most efficient minimization algorithms is Newton's method.
This method is a straightforward extension of the corresponding line search
procedure (described in Section 4.1). The objective function z(x) is approxi-
mated by a second-order Taylor series. This approximation is then minimized
and the new solution is taken to be the point that minimizes the approxi-
mation. The resulting algorithmic step is given by

x" + = xn- Vz(x") · [H(x")]-1 [4.12]

where H(x") is the Hessian of z(x) at x = x", and [.] -1 denotes the matrix

__

94

Chap. 4 Review of Some Optimization Algorithms

inversion operator. This method can be expressed in the standard form [4.7a]
by defining d" = - Vz(x") · [H(x")] - and a, = 1, V n.t

Newton's method is more efficient than the steepest descent method
because its search direction uses more information about the shape of z(x) at
x". It requires, however, the calculation and inversion of the Hessian matrix at
each iteration, a task that is computationally intensive even for medium-size
problems, and totally impractical for large ones.

The approach underlying quasi-Newton methodst is to try to construct
an approximation to the inverse Hessian by using information gathered in the
minimization process. The current approximation is used at each step to
modify the gradient direction and the process is usually coupled with a line
search to determine the optimal move size. The particulars of these methods
can be found in the references mentioned at the end of this chapter.

Constrained Minimization Algorithms

The study of transportation network equilibrium problems involves
equivalent mathematical programs which include exclusively linear con-
straints. The discussion of constrained minimization is limited, therefore, to
these types of constraints. The techniques reviewed in this section are appli-
cable to both equality and inequality constraints, even though most network
problems involve only equality constraints (apart from the nonnegativity con-
straints).

The basic framework outlined in the preceding section for unconstrained
minimization (i.e., finding a descent direction and advancing by an optimal
amount along this direction) can be used to describe algorithms for con-
strained optimization as well. The added difficulty in constrained optimization
is to maintain feasibility. In other words, the search direction has to point
toward a region where some feasible solutions lie, and the search for the
optimal step size has to be constrained to feasible points only. The focus of
this section is on these topics, which are common to all feasible direction
methods. The emphasis on this minimization approach stems from its impor-
tance in equilibrium analysis. Most current approaches to minimizing equiva-
lent equilibrium programs can be cast as feasible direction methods. In partic-
ular, the convex combinations algorithm, which is the basic tool for many
equilibrium analyses, is such a method. This algorithm is described in detail in
Section 4.3.

The discussion in this section does not mention explicitly convergence
criteria since those can be similar to the ones used for unconstrained mini-

tNote that in order to ensure that Newton's is a descent method, especially at the initial
iterations, the move size has to be optimized. In such cases , will not equal 1.

:These methods are also called variable metric approaches. The name stems from a partic-
ular interpretation of the technique used to define the search direction-it can be seen as an effort
to change the scale of the axes of the vector x so that z(x) is close to a spherical shape and the
gradient points in the right direction.

l - - ~~~~~~~~~~~__ __ __~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. ------

95

Part II User Equilibrium

mization (see Eqs. [4.8]). Note only that the minimum of a constrained pro-
gram is not necessarily a stationary point of the objective function, and thus a
gradient-based convergence criterion (such as Eq. [4.8b]) is not applicable.

As mentioned above, the two issues associated with maintaining feasibil-
ity are that the search direction has to point in a direction in which at least
some feasible points lie and that, given such a search direction, the step size
would not cause infeasibility. These two issues are described below in reverse
order. First the problem of maintaining feasibility given the search direction
and then the problem of finding a feasible direction.

Maintaining feasibility in a given direction. Consider the stan-
dard form of a minimization program (see Chapter 2)

min z(x) [4.13a]

subject to

hijx i b j f [4.13b]

where the constraints are all linear (the nonnegativity constraints are included
in Eqs. [4.13]). Assume further that the current solution is x", a point that may
lie on the boundary of the feasible region. In this case some of the constraints
are binding, that is,

hij x = b V j VE fn [4.14a]

where f" is the index set of the binding constraints at the nth iteration. The
other constraints are not binding, that is,

E hijx7 > bj V j 9 J" [4.14b]

Once a feasible descent direction, d", is obtained, the maximum move size
that can be taken without violating any constraints should be determined.
This maximum can then be used to bracket the search along the descent
direction, so the new solution will necessarily be feasible. Note that only the
constraints which are not currently binding (i.e., the constraints indexed by
j 0 /") might pose a problem in this regard (why?-see Problem 4.17) and
thus only the inequality constraints (all j f") need be considered. For
x" +1 = x" + a, d" to be feasible, the (currently) nonbinding constraints must
not be violated by the new solution, x"+ . In other words, the following must
hold:

hij(xi + an d) = d hijx + or, hij di 2 bj Vj " f"
i i i

Obviously, if Hi hi, di > 0 for a given constraint 1, there is no problem in
satisfying the above mentioned requirement, since the current solution is feasi-
ble (i.e., Hi hi,x7 2 b). (Intuitively, this means that the constraints for which

i hijid 2 0 will not be violated by the search direction.) Only in the cases

_·

96

Chap. 4 Review of Some Optimization Algorithms

where Ci hi d7 < 0 would there be a possible violation. Thus the maximum
possible value of a,, mnax, is given oy

b - ' hijx7
ama = min i

v l',. E hijdi
i

[4.15]

where the set f" includes all the constraints that are nonbinding and for
which Yi hijd7 < 0 at x". In other words, the maximum move size is deter-
mined by the first constraint to be violated when moving along the descent
direction. The optimal move size, a., can now be determined by solving

min z(x" + ad") [4.16a]

subject to

0< a < cnmax [4.16b]

with any of the interval reduction methods of Section 4.1.
Figure 4.6 demonstrates the various types of constraints involved in this

situation. It shows a feasible region bounded by five constraints (numbered 1
through 5). The current solution is on the boundary defined by constraint 1
and the descent direction points into the feasible region as shown in the figure.
The nonbinding constraints are 2 through 5 but constraints 2 and 5 need not
be considered since in the given search direction they will not be violated.
(These are constraints for which i hij d 2> 0.) The move size is determined by
checking which of the remaining constraints (3 or 4) will be violated first. In
this case, it is constraint 4 that sets the limit, Oxrax, for the line search that
follows.

Finding a feasible descent direction. Consider now the problem
of determining a feasible descent direction. At some iterations this may not be
a problem since a search direction identified by the algorithm used (which may

; :

Search
..:: Direction
..

:-:-::

.., .:.
.:-:-

.Z'

::

/::

A.
Figure 4.6 Maintaining feasibility along
a search direction by bracketing the range
of the line search.

I _ ___~ ___

97

...

...

Part II User Equilibrium

be steepest descent, Newton, quasi-Newton, or any other method) may be
feasible. In other cases, however, where the current solution is on the bound-
ary of the feasible region, the best descent direction may be pointing outside
that region. In such cases the direction has to be modified and the best (in
some sense)feasible descent direction should be used to continue the search.

In looking for a feasible direction of descent from x", only the binding
constraints need be considered. Those constraints that are not currently bind-
ing would not be violated by a small (infinitesimal) move in any direction and
should not, therefore, be considered. Given a candidate descent direction d =
(..., d...), the following must hold in order to ensure feasibility:

hijx + E hijdi > bj V j E ," [4.17a]
i i

where Aa is a small move size. Since Ei hi x = bj for all j E fn, expression
[4.17a] reduces to

hijd, 2 0 Vj E /" [4.17b]

Condition [4.17b] should be satisfied by any feasible direction.
The direction offering the steepest feasible descent can be found by solv-

ing the program

min Vz(x") dT [4.18a]

subject to

hhd > 0 Vj e j" [4.18b]

d d=1 [4.18c]

The objective function [4.18a] is the cosine of the angle between the
gradient and the descent direction.t This program then finds the descent direc-
tion that is closest to the opposite gradient direction (the cosine is minimized
for an angle of 180°) yet satisfies the feasibility requirements. The last con-
straint normalizes the descent direction vector in order to ensure a unique
solution. It is, unfortunately, a nonlinear constraint, meaning that program
[4.18] may be difficult to solve.t

The solution of this program is the steepest feasible descent vector. This
vector defines the direction in which the search for the next solution, x"+1,

should be conducted. (As explained above, this search may have to be brack-
eted first to ensure the feasibility of x" + 1.)

The literature includes many other algorithms for determining a "good"

tSince d is constrained to be a unit vector, the objective function can be interpreted as the
slope of z(x) at x", in the direction d.

:The references mentioned in Section 4.5 include some descriptions of approximate meth-
ods to determine the best feasible direction. For example, one method approximates constraint
[4.18c] by the constraints -1 I di < 1, V i, which is linear and therefore easier to deal with.

98

Chap. 4 Review of Some Optimization Algorithms

feasible descent method. As an example of such methods, consider the gradient
projection method, which obtains the next solution by "sliding" along the
binding constraints at the current point. This strategy is, of course, followed
only if the current descent direction (which is the direction opposite the gradi-
ent) points out of the feasible region (otherwise, there is no problem and the
algorithm proceeds along the opposite gradient direction). The sliding direc-
tion is identified by projecting the opposite gradient direction on the binding
constraints. The projection procedure itself includes some matrix manipu-
lations involving the binding constraints. The move size is optimized along the
descent direction, subject to the requirement that none of the (currently non-
binding) constraints is violated.

4.3 CONVEX COMBINATIONS METHOD

The convex combination algorithm was orginally suggested by Frank and
Wolfe in 1956 as a procedure for solving quadratic programming problems
with linear constraints and is known also as the Frank-Wolfe (FW) method.
The method is especially useful for determining the equilibrium flows for
transportation networks, which is why it is emphasized in this chapter.

Algorithm

The convex combinations algorithm is a feasible direction method.
Unlike the general procedure for feasible direction methods described in the
preceding section, the bounding of the move size does not require a separate
step (such as Eq. [4.15]) with this algorithm. The bounding is accomplished as
an integral part of the choice of descent direction. The direction-finding step of
the convex combinations algorithm is explained in this section from two
angles. First, this step is explained by using the logic of the general procedure
for feasible direction methods outlined in the preceding section, and second,
this step is presented as a linear approximation method.

To look at the direction-finding step of the convex combination algo-
rithm as that of a feasible direction method, consider the convex program

min z(x) [4.19a]

subject to

Y hijxi 2 bj Vj f [4.19b]

Assume now that at the nth iteration, the current solution is x". Most feasible
direction methods use information about the shape of the objective function in
the vicinity of x" to determine the descent direction. Consequently, the descent
direction is based on the opposite gradient direction or the direction of the
(locally) steepest feasible descent.

- ._ __· _�__ �_��_

99

Part II User Equilibrium

The convex combinations method selects the (feasible) descent direction
not only on the basis of how steep each candidate direction is in the vicinity of
x", but also according to how far it is possible to move along this direction. If,
for example, only a small move is feasible in a certain direction, effort might be
wasted in actually performing an iteration based on such a move. Even though
the direction may be associated with a steep local decrease in z(x), the overall
reduction in the objective function from z(x) to z(x"+) may not be significant.
On the other hand, a direction of change in which the local rate of improve-
ment is modest but where the feasible region allows a considerable movement
may achieve a larger reduction. The criterion for choosing directions in the
convex combinations method is therefore based on the product of the rate of
descent in the vicinity of x" in a given direction and the length of the feasible
region in that direction. This product, known as the "drop," is an upper bound
to the possible reduction in the objective function value which can be achieved
by moving in this direction. The algorithm uses the direction that maximizes
the drop.

To find a descent direction, the algorithm looks at the entire feasible
region for an auxiliary feasible solution, y = (yn, ... , ... y'), such that the
direction from x" to y" provides the maximum drop. The direction from x" to
any feasible solution, y, is the vector (y - x") [or the unit vector (y - x")/ll y
- x" II].t The slope of z(x") in the direction of (y - x") is given by the projec-

tion of the opposite gradient [- Vz(x")] in this direction, that is,

(y - x")T-Vz(x") ·
IHY- x" l

The drop in the objective function in the direction (y - x") is obtained by
multiplying this slope by the distance from x" to y, II y - x" II. The result is

- Vz(x") . (y - xn)T

This expression has to be maximized (in y) subject to the feasibility of y.
Alternatively, the expression can be multiplied by (-1) and minimized, re-
sulting in the program

min Vz(x") . (y - x")T = z(x (yi - xi) [4.20a]

subject to

hyi 2 bi Vj [4.20b]

where the constraints [4.20b] are equivalent to the original constraint set
[4.19b] expressed in y. The solution of program [4.20] is y" and the descent
direction is the vector pointing from x" to y", that is, d" = (y - x), or in
expanded form, d = yi - xi, V i.

tThe notation II v means the norm (or length) of the vector v, that is, v/v = /.

100

Chap. 4 Review of Some Optimization Algorithms

Finding the descent direction, then, involves a minimization of a linear
program, which is given in Eqs. [4.20]. As mentioned in the beginning of this
section, this algorithmic step can also be motivated by looking at the convex
combination method as a linear approximation method. This approach is
based on finding a descent direction by minimizing a linear approximation to
the function (instead of the function itself) at the current solution point. Mini-
mizing this linearized function subject to a linear constraint set is a linear
programming problem which has its solution at a corner of the feasible region
(see Section 2.3). The line connecting the current solution points, x", with the
solution of the linearized problem (denoted y") is the direction of search. This
approach results in the same program as Eqs. [4.20]. To see this, let z(y)
denote the linear approximation of the value of the objective function at some
point y, based on its value at x". This approximation is given by

Z(Y) = z(x") + Vz(x") (- x")T [4.21]

This linear function of y has to be minimized subject to the constraints of the
original problem, that is,

min z(y) = z(x") + Vz(x"). (y - x")T [4.22a]

subject to

hiy, 2> bi Vj / [4.22b]

Note that, at the point x = x", the value of the objective function is constant
and thus z(x") can be dropped from Eq. [4.22a]. The problem that remains is
that of minimizing Vz(x") (y - x")T subject to constraints [4.22b]. This pro-
gram is identical to program [4.20], and its solution (again) can be used to
construct a direction for the convex combinations algorithm. Thus both points
of view can be used to motivate the algorithmic step of the convex combi-
nations method.

The objective function of the linearized problem, can, however, be sim-
plified even further by noting that Vz(x") is constant at x" and the term
Vz(x")· (x")T can therefore be dropped from the linearized program (see Eq.
[4.20a]), which can then be written as

min z(y) = Vz(x) . yT = y [4.23a]

subject to

hij yi b V j Ef [4.23b]

The variables of this linear program are yI, Y2, ..., y, and the objective
function coefficients are z(x")/xX, z(x")/ax 2, ... , z(x")/Sx1 . These coef-
ficients are the derivatives of the original objective function at x", which are
known at this point. The solution of program [4.23], y" = (y', y', ... , y), is
used to define the descent direction (i.e., d = y - x"), as explained above.

Ij _ _�
__· _�_��__

101

Part II User Equilibrium

Once the descent direction is known, the other algorithmic steps involve the
determination of the move size and a convergence test.

As in many other descent methods, the move size in the direction of d"
equals the distance to the point along d" which minimizes z(x). As mentioned
before, the convex combinations methods does not require a special step to
bracket the search for an optimal move size (such as Eq. [4.15]) in order to
maintain feasibility. The new solution, x"+ , must lie between x" and y" (since
y", being a solution of a linear program, naturally lies at the boundary of the
feasible region). In other words, the search for a descent direction automati-
cally generates a bound for the line search by accounting for all the constraints
(not only the binding ones) when the descent direction is determined. Since the
search interval is bracketed, then, any one of the interval reduction methods
would be suitable for the minimization of z(x) along d" = (y" - x"), that is, for
solving

min z[x + (y" - x")] [4.24a]

subject to

0 < oc 1 [4.24b]

Once the optimal solution of this line search, ao, is found, the next point can
be generated with the usual step,

"+ = X" + a.(y" - x") [4.25]

Note that Eq. [4.25] can be written as x = (1 - .)x" + c,.y". The new solu-
tion is thus a convex combination (or weighted average) of x" and y".

The convergence criterion used in conjunction with the convex combi-
nations algorithm can be any one of the criteria commonly used for feasible
descent methods. Thus the convergence criterion can be based on the simi-
larity of two successive solutions or the reduction of the objective function
values between successive iterations.

Two general comments are in order here. First, as explained above, the
convex combinations algorithm involves a minimization of a linear program
as part of the direction-finding step. The convex combinations algorithm, then,
is useful only in cases in which this linear program can be solved relatively
easily. It is also useful when algorithms which are generally more efficient than
the convex combination method (e.g., Newton and quasi-Newton methods)
cannot be utilized due to the size of the problem. Many of the minimization
problems described in this book possess both properties: they include a large
number of variables, yet the linear program associated with the direction
finding step can be solved with particular ease. The reason is that this pro-
gram, in the cases dealt with in this text, has a special structure to it-that of a
network-which can be exploited to facilitate the solution of the linear pro-
gram.

The second comment concerns an interesting characteristic of the convex

� ____ I_ _ __I __��__� I __

102

Chap. 4 Review of Some Optimization Algorithms

Z[x]

[x*]

Z(x") + dZ[x") (x*.x']
dx

Z[xn) + dzlxn} 'yn'xn]dx
x

y"

Figure 4.7 The bounds generated by a linear approximation to a function z(x) at a
point x".

combinations algorithm. In this method, the value of the linearized objective
function at its solution, z(y"), is a lower bound to the optimal value of the
objective function itself, z(x*). To see this, recall that by convexity,

z(x*) > z(x") + Vz(x") (x* - x")T = z(x*) [4.26a]

However, y" minimizes z(y) for any feasible y. Consequently,

zL(x*) 2 z(y") = z(x") + Vz(x") (y" - x")T [4.26b]

Thus zn(y") is a lower bound for z(x*) at every iteration. Note that this lower
bound generated by the convex combinations method is a straightforward
extension of the lower bound mentioned in Section 4.1 for interval reduction
methods. Figure 4.7 illustrates the relationships in Eqs. [4.26] for a one-
dimensional convex function, z(x). Note also that this lower bound is not
monotonically increasing from iteration to iteration and therefore cannot be
used in a straightforward fashion to create a convergence criterion (see Prob-
lem 4.21).

Given a current feasible solution, x", the nth iteration of the convex
combinations algorithm can be summarized as follows:

Step 1: Direction finding. Find y" that solves the linear program [4.23].

Step 2: Step-size determination. Find a, that solves

min z[x" + (y"- x")]
0o< 1

I _~_

103

Part II User Equilibrium

Step 3: Move. Set x" + = x" + a,(y - x").

Step 4: Convergence test. If z(x")- z(x"+) < c, stop.t Otherwise, let
n = n + 1 and go to step 1.

Starting with a feasible solution, x, the algorithm will converge after a finite
number of iterations.

Example

Consider the following mathematical program:

min z(x) = x2 + 2x2 - 2x1x2 - 10x 2

subject to

0< x, <4
0 <x2 <6

Application of the convex combinations method to this program can be facili-
tated by some preliminary calculations. The gradient of z(x) at x" is given by

Vz(x 1, x2) = [(2x' - 2x2), (4x2 - 2x' - 10)]

The linear program at the nth iteration is thus

min z(y) = (2xn - 2xn)y + (4x2 - 2x" - 10)y2

subject to

0 <y < 4

0 < Y2 < 6

Since this problem is small, the optimal move size can be determined analyti-
cally by setting

dz[x" + a(y" - x)]
da

Given x" and y", the optimal move size is, as the reader can verify,

(y~ - x;)(x; - x) + (y" - x)(2x2 - x - 5)
2(y' - xlXy" - x) - 2(y' - x I)2 -(y' - x)2

This concludes the preliminary calculations and the algorithm can now be
executed. The convergence criterion is set, for example, at 0.1, terminating the
procedure when z(x")- z(x" + ') < 0.1. The algorithmic steps are depicted in
Figure 4.8 in relation to the feasible region and the objective function. These
steps are explained below.

tOther convergence criteria could also be used.

I

104

Chap. 4 Review of Some Optimization Algorithms

trained

0,5.01- -25.0

Solution
Z 4.0,4.5)- -24.5

xl

Min Z(xJ -x 2 + 2 2 - 2xlx2 - Ox21 22-AX2IX

s.t. 0xl < 4

0S X2 6

Figure 4.8 Convergence pattern of the convex combinations
dratic function with linear constraints.

algorithm for a qua-

Starting with the feasible solution xl = (0, 0) and z(0, 0) = 0, the first
iteration goes as follows:

First iteration:

Step 1: The gradient is Vz(O, 0) = (0, - 10). The linear program is

min Vz(xl) · y = - 10 Y2

subject to

O <y, <4
o <Y2 6

Solution (by
y' = (4, 6).

Step 2:

inspection of Figure 4.8): y' = (0, 6) or y = (4, 6). Choose

(4 - 0)(0 - 0) + (6 - OX2 .0 - 0 - 5)

2(4 - 0)(X6 - 0)- 2(6 - 0)2 - (4 - 0)2= 0750

I· __�_� _�� �__�_ _

105

Part II User Equilibrium

Step 3:

x2 = 0 + 0.750(4 - 0) = 3

x2 = 0 + 0.750(6 - 0) = 4.5

Step 4:

z(3, 4.5) = -22.5

z(x 1)- z(x2) = 0 - (-22.5) = 22.5

Second iteration:

Step 1: Vz(3, 4.5) = (-3.0, 2.0). The linear program is

min Vz(x2) y = - 3y + 2Y2

subject to

0 <y, <4
0< Y2 <6

Solution (by inspection): y2 = (4, 0).

Step 2: c2 = 0.119.
Step 3:

x3 = 3.0 + 0.119(4.0 - 3.0) = 3.119

x] = 4.5 + 0.119(0.0 - 4.5) = 3.966

Step 4:

z(3.119, 3.966)= -23.213

z(x 2) - z(X3) = 0.713

Obviously, the convergence criterion is not met and the algorithm con-
tinues. Table 4.2 shows the sequence of iterations of the convex combinations
algorithm for this example. As evident in the table, the convergence criterion is

TABLE 4.2 Iterations of the Convex Combinations Algorithm (see Figure 4.8)

n Vz(x") yl Z(y
3) a. x(+1 z(X+ 1) Z(X) - z(x"+ t)

0 (0.000, 0.000)
1 (0.000, - 10.000) (4, 6) -60.000 0.750 (3.000, 4.500) -22.500 22.500
2 (-3.000, 2.000) (4, 0) -35.213 0.119 (3.119, 3.969) -23.213 0.713
3 (-1.693, -0.376) (4, 6) -24.211 0.206 (3.301, 4.385) -23.446 0.233
4 (-2.169, 0.939) (4, 0) -29.257 0.063 (3.344, 4.111) -23.622 0.176
5 (-1.833, -0.295) (4, 6) -25.196 0.144 (3.439, 4.383) -23.728 0.106
6 (-1.889, 0.656) (4, 0) -27.752 0.045 (3.464, 4.186) -23.816 0.089

106

Chap. 4 Review of Some Optimization Algorithms

Z xn

-_ n

-22.4

-22.8

-23.2

-23.6

-24.0
s P n

1 2 3 4 5 6 [Iteration number)

Figure 4.9 The asymptotic reduction in the objective function value as the iter-
ations of the convex combinations algorithm proceed.

met after six iterations and the algorithm terminates. Note that, as mentioned
before, the lower bound generated at each step, z(yn), is not monotonically
increasing.

Figure 4.8 depicts the pattern of convergence toward the minimum. This
convergence pattern is demonstrated in Figure 4.9 in terms of the reduction in
the value of the objective function from iteration to iteration. The asymptotic
pattern shown in this figure is typical of the convex combinations algorithm.
The marginal contribution of each successive iteration becomes smaller and
smaller as the algorithm proceeds (this property was the basis for the conver-
gence criterion used in the example).

4.4 SUMMARY

This chapter reviews numerical minimization methods. It begins with a study
of line search algorithms, that is, methods for minimizing a function of a single
argument. The presentation covers two groups of methods: interval reduction
algorithms and quadratic fit approaches. Quadratic fit methods are usually
faster if the objective function is relatively smooth. Interval reduction methods
are naturally useful in minimizing a function over a given interval.

The review of minimization algorithms for multivariable programs deals
separately with unconstrained and constrained minimizations. Most of the
methods available for minimizing an unconstrained function of several vari-
ables are based on choosing a descent direction at a current solution and
moving along this direction to the next solution point. The steepest descent
method uses the opposite gradient as the descent direction and then chooses
the next solution at the point that minimizes the objective function along this
direction. This method often requires a large number of iterations to converge

I ~ _ _~ ___ __ __

107

Part II User Equilibrium

due to its "zigzagging" tendency. Many of the algorithms that require smaller
number of iterations cannot be used for the problems covered in this book
since they require computation of the Hessian (or an approximation of it).
Such requirements are computationally prohibitive for large problems of the
type encountered in traffic assignment analyses.

When minimizing constrained functions, the choice of descent direction
and move size cannot be governed by considering only the objective function,
since feasibility has to be maintained. The descent vector has to point in a
direction that includes at least some feasible points. Similarly, the move size
has to be constrained so that the next point is within the feasible region.

The last section of this chapter describes the convex combinations algo-
rithm. This algorithm is a feasible descent method that is based on a linear
approximation of the objective function at every iteration. Consequently, a
linear program has to be solved at every iteration in order to determine the
descent direction. The move size is determined by minimizing the objective
function along the descent direction. This algorithm is efficient when the linear
program can be solved easily.

Convergence of any of the algorithms described in this chapter can be
measured by the similarity of successive solutions or by the rate of reduction
in the objective function from one iteration to the next.

4.5 ANNOTATED REFERENCES

Much of the material covered in this chapter can be found in the references
mentioned at the end of Chapter 2. In particular, the reader who is interested
in convergence proofs should consult the texts of Zangwill (1969) and Luen-
berger (1973). The former includes many original contributions, and the latter
summarizes the global convergence conditions for the various algorithms men-
tioned in this text. Good descriptions of feasible direction methods can be
found in Simmons (1975) (including several methods for expediting conver-
gence of steepest descent algorithms by modifying the search direction every
few steps) and Wagner (1975). More detailed descriptions of the Fibonacci
method can be found in the texts of Wilde (1964) and Wismer and Chattergy
(1978). The convex combinations method first appeared in the literature in the
paper by Frank and Wolfe (1956). A general proof of convergence for this
method is offered by Zangwill in the aforementioned text.

4.6 PROBLEMS

4.1. Derive formula [4.1] for interval reduction methods.
4.2. Show that if an interval reduction method with a constant reduction ratio has to

satisfy E. [4.2], then the reduction ratio is the golden section. Show also that
r = (5- 1) leads to Eq. [4.2].

__

108

Chap. 4 Review of Some Optimization Algorithms

4.3. Use the golden section method to find the minimum of the function z(x) = 3x 2

- 4x + 1 within x* + 0.1 in the interval [0, 2]. How many function evaluations
are needed? How many function evaluations would be needed to find the solu-
tion within x* + 0.001?

4.4. Use the golden section to find, within + 0.15 of the optimum, the value of x that
minimizes the function

z(x) = max {(2-x (x - 3)2,

such that 0 < x < 8.
4.5. Using a mathematical programming text, describe the Fibonacci search algo-

rithm. Compare its mechanism and its efficiency to that of the golden section
method and the bisection method.

4.6. Use the bisection method to find the minimum of z(x) = 3x 2 - 4x + 1 over the
interval [0, 2]. Determine the optimal value of x within 5% of the initial inter-
val. How many function evaluations are needed to get within x* + 0.001?

4.7. Find the minimum of z(x) = 2x3 + 3x2 - 12x + 5 in the interval [0, 4] using:
(a) Newton's method (use x0 = 0).
(b) The false position method (use x0 = 0, x' = 0.5).
(c) The quadratic fit method (use xl = 0, x 2 = 0.5, X3 = 1).

*4.8. (a) Show why the curve-fitting algorithms described in the text are not truly
descent methods. How can the quadratic fit method be modified to be a
descent method.

(b) Show why Newton's method for minimizing multivariate functions (Eq.
[4.12]) is not a descent method and how should it be modified to be a
descent method.

4.9. Develop the algorithmic iteration for the quadratic fit method (i.e., derive formu-
la [4.6]).

4.10. Write a computer subroutine that accepts a function, an interval, and a conver-
gence criterion and performs a golden section search.

4.11. Write a computer subroutine that executes a line search using the bisection
method.

4.12. Suggest a procedure for amending an interval reduction method so that it can be
used for the line search phase when minimizing an unconstrained function.

*4.13. Prove that the steepest descent algorithm is a descent method.

4.14. Using the steepest descent method, find the minimum of the quadratic function

Z(X1, X2) = (x 1 - 2)2 + 4(x 2 - 3)2

Starting from x0 = (0, 0) plot the algorithmic moves and verify the zigzag prop-
erty of the algorithm.

4.15. Perform four iterations of the steepest descent method to solve

min z(x) = x2 + 2x2 + x2 - 2x1- 3x2 - 2x3

Start at the point x = (0, 0, 0).

*4.16. Find an approximate analytical expression for the optimal step size along the
negative gradient direction for convex functions. [Hint: Use a second-order
expansion of z(x) about z(x").]

l ___ I

109

Part II User Equilibrium

4.17. Consider the mechanics of feasible descent algorithms.
(a) Why do only the nonbinding constraints need be considered in maintaining

feasibility along the (feasible) descent direction?
(b) Why do only the binding constraints need be considered in finding the best

feasible descent direction?

4.18. Show that if z(x) is a convex function of x, z(x" + ad") is a convex function of a.

4.19. Show that the direction used by the convex combinations method is always a
descent direction.

4.20. Use the convex combinations algorithm to solve the program:

minf(xl, x2) = 4(x1 - 10)2 + (x 2 - 4)2

subject to

x - x2 < 10

½x - x2 > 3

Use a plot of the feasible region to solve the linearized problem by inspection.
Plot the algorithmic steps in this space.

4.21. The convex combinations algorithm generates a lower bound to the objective
function at every iteration. Use this bound to develop a convergence criterion
for this algorithm.

Y

110

The problem of finding the user equilibrium over a transportation network
was introduced in Chapter 1. It involves the assignment of O-D flows to the
network links so that travel time on all used paths for any O-D pair equals
the minimum travel time between the origin and destination. This problem
was formulated as a mathematical program (the equivalent UE minimization)
in Chapter 3. Chapter 4 reviewed a general class of algorithms for solving
mathematical programs and focused on the convex combinations method.
This chapter describes the application of this method to the solution of the
user-equilibrium minimization program.

Before this application of the algorithm is explained, however, two of the
most common heuristic methods for finding the user-equilibrium flow pattern
are outlined in Section 5.1. These approaches had been extensively used before
solution algorithms for the UE program were developed and are still widely
applied today. Section 5.2 then demonstrates how the convex combinations
algorithm can be applied to the equivalent user-equilibrium program. The last
section of this chapter concentrates on an algorithm for finding the minimum-
travel-time path between two network nodes. The determination of minimum
paths is a major component of the algorithmic solution of the UE program
(and of the heuristic algorithms mentioned in Section 5.1).

5.1 HEURISTIC EQUILIBRATION TECHNIQUES

The heuristic approaches to the user-equilibrium problem reviewed in this
section include capacity restraint methods and incremental assignment tech-
niques. At the core of these methods lies the network loading mechanism.

111

____· ___

-

Part II User Equilibrium

Network loading is the process of assigning the O-D entries to the network
for specific (constant) link travel times. The process follows the route-choice
criterion, which underlies any traffic assignment model. As argued in Chapter
1, the UE flow pattern is the result of each motorist using the minimum travel
time path between his origin and his destination. Accordingly, the network
loading mechanism used in all the algorithms designed to solve the UE prob-
lem assigns each O-D flow to the shortest travel time path connecting this
O-D pair. As mentioned in Chapter 3 (see discussion following Eqs. [3.28]),
this procedure is known as the "all-or-nothing" assignment.

In the all-or-nothing procedure, each O-D pair r-s is examined in turn
and the O-D flow, q,, is assigned to every link that is on the minimum-travel-
time path connecting origin r to destination s. All other paths connecting this
O-D pair are not assigned any flow. During this process, the link travel times
are assumed to be fixed (i.e., not flow dependent) at some value. Accordingly, if
there is a performance curve, t(xa), corresponding to each link in the network,
any mention of all-or-nothing assignment (or any other network loading
mechanism) should be made in conjunction with a specific travel time. For
example, the all-or-nothing assignment can be applied to an empty network,
that is, using the travel times t = t(O) for every link, a. The only compu-
tational difficulty with the all-or-nothing procedure involves the identification
of the minimum-travel-time paths connecting each O-D pair. This, however, is
a well-researched problem in graph theory and several algorithms for its solu-
tion are readily available. Section 5.3 describes one of the more efficient of
these procedures, one that is particularly applicable to transportation net-
works.

Many of the early urban transportation studies have used the all-or-
nothing procedure (based on empty network times) as the traffic assignment
procedure. This assignment method does not recognize, of course, the depen-
dence between flows and travel time, thus, in effect, it ignores the equilibrium
problem altogether.

Capacity Restraint

In an attempt to capture the equilibrium nature of the traffic assignment
problem, transportation planners have devised an iterative scheme known as
capacity restraint. This method involves a repetitive all-or-nothing assignment
in which the travel times resulting from the previous assignment are used in
the current iteration. The algorithm can be summarized as follows:

Step 0: Initialization. Perform all-or-nothing assignment based on
to° = t(0), V a. Obtain a set of link flows {x°}. Set iteration counter n 1.

Step 1: Update. Set t = ta(xa-1), V a.

Step 2: Network loading. Assign all trips to the network using all-or-
nothing based on travel times {t}. This yields a set of link flows {xa}.

II U

112

Chap. 5 Solving for User Equilibrium

TABLE 5.1 Capacity Restraint Algorithm Applied to the Network
in Figure 5.1

Link
Iteration Algorithmic
Number Step 1 2 3

0 Initialization t o
= 10 to = 20 to = 25

x= 10 x = 0 x° = 0
1 Update t = 947 t4= 20 t = 25

Loading xl = 0 xI= 10 x3= 0

2 Update t2= 10 t2 = 137 t = 25
Loading x2= 10 x2= 0 x2= 0

3 Update t3 = 947 t3= 20 t3 = 25
Loading X3= 0 X3= 10 x3= 0

Step 3: Convergence test. If maxa {I x -- I-'} < K,t stop (the current
set of link flows is the solution). Otherwise, set n = n + 1 and go to step 1.

Table 5.1 demonstrates an application of this procedure to the example
network depicted in Figure 5.1, shown on page 114. Starting with travel times
corresponding to an empty network, the initial solution is determined and the
iterations follow the above-mentioned algorithm. Note that the algorithm does
not converge, as the flow "flip-flops" between links 1 and 2, whereas link 3
does not get loaded at all.

To remedy this situation, the algorithm can be modified as follows. First,
instead of using the travel time obtained in the previous iteration for the new
loading, a combination of the last two travel times obtained is used. This
introduces a "smoothing" effect. Second, the failure to converge is recognized
explicitly and the algorithm is terminated after a given number of iterations,
N. The equilibrium flow pattern is then taken to be the average flow for each
link over the last four iterations (obviously, N should never be less than 4).
This form of the algorithm was adopted by the U.S. Federal Highway Admin-
istration (FHWA) as part of its transportation planning package. The steps of
the modified capacity restraint algorithm (using weights of 0.75 and 0.25 for
the averaging process) are as follows:

Step 0: Initialization. Perform an all-or-nothing assignment based on
ta = t(O). Obtain {x°}. Set n= 1.

Step 1: Update. Set xT = ta(xa-1), V a.

Step 2: Smoothing. Set t = 0.75ta- + 0.25Ta, V a.

tThis convergence test is based on the maximum change in link flow between successive
iterations. Other criteria can also be used.

-------A_ .

113

Part II User Equilibrium

Link 1

tl= 10[1-0.15[X j4] time units

t2 - 20 [1 0.15 [X214 time units

t - 25 10.15 j4 time units

Figure 5.1 Network example, with three
xl + x2 + 3 - 10 flow units links and one O-D pair.

Step 3: Network loading. Perform all-or-nothing assignment based on
travel times {t:}. This yields {x"}.

Step 4: Stopping rule. If n = N, go to step 5. Otherwise, set n := n + 1
and go to step 1.

Step 5: Averaging. Set x = D3=0 X'-l V a and stop. ({x*} are the
link flows at equilibrium.)

The smoothing is accomplished by creating a temporary link-travel-time
variable, z, which is not used as the travel time for the next iteration (see step
1). Instead, it is averaged together with the travel time used in the last iter-
ation, t-', to obtain the link travel time for the current iteration, t. This is
done in step 2. This algorithm differs from the original capacity restraint
algorithm in the addition of the smoothing step and the averaging step. Note
that step 4 is called a stopping rule rather than a convergence test, since there
is no reason to expect this algorithm to converge to the equilibrium solution,
in spite of these changes.

An application of this algorithm to the network example of Figure 5.1 is
demonstrated in Table 5.2. Note that it produces a solution that is not an
equilibrium flow pattern since, even though all paths are used, t is substan-
tially different from t and t. The table shows three iterations in addition to
the initialization, meaning that four minimum-path computations are repre-
sented. For large networks, this is the main computational burden, and thus
traffic assignment algorithms should be compared in terms of efficiency for a
given number of minimum-path computations (i.e., a given number of all-or-
nothing assignments).

* _1��______ �__ __ __

114

Chap. 5 Solving for User Equilibrium

TABLE 5.2 Modified Restraint Algorithm Applied to the Network in Figure 5.1

Link
Iteration Algorithmic
Number Step 1 2 3

0 Initialization to = 10 to
=20 to

= 25
x = 10 x = 0 x= 0

1 Update Tr = 947 T = 20 Tr = 25
Smoothing t' = 244 t' = 20 t = 25
Loading x1= 0 x,= 10 xl= 0

2 Update T2 = 10 T2 = 137 T2= 25
Smoothing t = 186 t2= 49 t3= 25
Loading x2= 0 x2= 0 x2= 10

3 Update T3 = 10 r3 = 20 T3 = 488
Smoothing t3 = 142 t3= 42 t3 = 141
Loading X3 = 0 x3= 10 x3= 0

Average x = 2.5 x* = 5.0 x = 2.5
t* = 13.7 t2= 27.3 t3= 26.8

Incremental Assignment

Another heuristic method for attaining the user-equilibrium solution as-
signs a portion of the origin-destination matrix at each iteration. The travel
times are then updated and an additional portion of the O-D matrix is loaded
onto the network. In this manner, the general shape of the link performance
functions can be "traced" with the successive assignments. This procedure,
which is known as incremental assignment, is outlined below. (In this descrip-
tion, w denotes the flow on link a resulting from the assignment of the nth
increment of the O-D matrix onto the network.)

Step 0: Preliminaries. Divide each origin-destination entry into N
equal portions (i.e. set qr = q,8/N). Set n := 1 and xo = 0, V a.

Step 1: Update. Set t = t(xa-), V a.

Step 2: Incremental loading. Perform all-or-nothing assignment based
on {t}, but using only the trip rates q for each O-D pair. This yields a flow
pattern {wa).

Step 3: Flow summation. Set xa = x 1 + w, V a.

Step 4: Stopping rule. If n = N, stop (the current set of link flows is the
solution); otherwise, set n:= n + 1 and go to step 1.

In some versions of this algorithm, the incremental all-or-nothing procedure in
step 2 is modified and origin-destination pairs are selected in random order,

----- �

115

Part II User Equilibrium

TABLE 5.3 Incremental Assignment Algorithm Applied to the Network
in Figure 5.1

Link
Iteration Algorithmic

(Increment) Step 1 2 3

1 Update t: = 10 t2 = 20 t} = 25
Incremental loading w = 2.5 w2 = 0 w} = 0
Summation xl= 2.5 x2= 0 xI = 0

2 Update t2 = 14 t2= 20 t = 25
Incremental loading w2 = 2.5 w2 = 0 w2 = 0
Summation x2 = 50 x2= 0 x2 = 0

3 Update t3 = 69 t3 = 20 t3 = 25
Incremental loading 3 = 0 3 = 2.5 W3 = 0
Summation X3= 5.0 X3= 2.5 X3= 0

4 Update t4 = 69 t = 20.5 t = 25
Incremental loading w" = 0 w} = 2.5 w} = 0
Summation x4= 5.0 X4= 5.0 X4 = 0

Travel time at convergence t = 69 t* = 27.3 t* = 25

with a flow summation phase (as in step 3) and travel-time update (as in step
4) following each partial assignment (i.e., after each O-D entry is loaded).

Table 5.3 demonstrates the application of this algorithm to the network
example of Figure 5.1. The flow pattern resulting from an incremental assign-
ment with four increments is x = (5, 5, 0). The last row in the table [t* = ta(x4)
for a = 1, 2, 3] is provided so that the reader can judge the closeness of the
solution to an equilibrium flow pattern. As evident from this table the two
used paths (links 1 and 2) do not exhibit equal travel times. Furthermore, these
travel times are higher than that of the unused path (link 3).

In conclusion, it is clear that the heuristic methods reviewed in this
section either do not converge or produce a set of flows that is not in agree-
ment with the user-equilibrium criterion. It may be reasonable to believe,
though, that in general, as the number of increments grows, the incremental
assignment algorithm may generate a flow pattern closer to the user-equilibri-
um condition. A very large number of increments (associated with a consider-
able computational effort) may be required, however, and even then the
method will not always produce the user-equilibrium flow pattern.

5.2 APPLYING
THE CONVEX COMBINATIONS METHOD

As the examples of the preceding section demonstrate, the heuristic methods
discussed thus far may not converge to the equilibrium solution. It is this
failure to converge which motivates the overall approach taken in this book-

- - -------- ----------- ---- ·--- --- - - - -�se.

116

Chap. 5 Solving for User Equilibrium

formulating the user-equilibrium problem as a mathematical program and
solving this program. Chapter 3 dealt with the program formulation and
showed that the flow pattern which minimizes the UE equivalent program is,
in fact, a user-equilibrium solution. This program includes a convex (nonlin-
ear) objective function and a linear constraint set. Chapter 4 reviewed various
feasible direction methods for solving such programs, emphasizing the convex
combinations method. This method is especially suitable for solving the equiv-
alent UE program since the direction-finding step can be executed relatively
efficiently. This step involves the solution of a linear program, which, in the
case of the UE program, has a special structure that simplifies its solution.

Using the notation introduced in Chapter 3, the UE objective function is
given by

min z(x)= E Jota(W) dco [5.la]

subject to

f k= qrs V r, s [5.lb]
k

fks 2 V k, r, s [5.lc]

where Xa is the flow on link a,fks is the flow on path k connecting origin r with
destination s, and the incidence relationships Xa = rs, Ek fksk, V a, hold.

Applying the convex combinations algorithm to the minimization of the
UE program requires, at every iteration, a solution of the linear program (LP)

min z(y)= Vz(xn) yT = z(x) Ya [5.2]

over all feasible values of y = (..., y, ...) (see Eqs. [4.23]). The gradient of
z(x) with respect to the link flows at the nth iteration is the link travel-time
vector, since az(xn)/OXa = t (see Eq. [3.12a]). The LP objective function at the
nth iteration (given by Eq. [5.2]) thus becomes

min z(y)= I tYa [5.3a]
a

subject to

g = qrs V r, s [5.3b]
k

gk 20 V k, r, s [5.3c]

where ya = Irs ~k S,, k' V a, and t = ta(xa). In this linear program, ya is the
auxiliary variable representing the flow on link a, while grS is the auxiliary flow
variable for path k connecting O-D pair r-s. This program calls for mini-
mizing the total travel time over a network with fixed (not flow-dependent)
travel times, t. The total travel time spent in the network will be minimized
by assigning all motorists to the shortest travel-time path connecting their

s II___ _��__� __ I_ ����____���_ - -~~~~~~~~~~~~~~~~

117

Part II User Equilibrium

origin to their destination (see Section 3.5). Such an assignment is performed
by the all-or-nothing network loading procedure mentioned earlier. Conse-
quently, the program in Eqs. [5.3] is known as the all-or-nothing program.
The core of the all-or-nothing procedure is the determination of the shortest
paths between all origins and all destinations. Section 5.3 outlines an efficient
method for finding these paths between all the network nodes. At this point, it
is sufficient to mention that program [5.3] can be solved efficiently.

To see that the solution of program [5.3] does not involve more than an
all-or-nothing assignment, the linearization step of the convex combinations
method can be derived by taking the gradient of objective function [5.la] with
respect to path flows (instead of link flow, as in [5.2]). The linearized program
then becomes

min z(g) = Vf z[x(f)] * gT = E E csng. [5.4a]
rs k

subject to

E E gk = q,, V r, s [5.4b]
rs k

gks O V k, r, s [5.4c]

where crks is the travel time on path k connecting r and s, at the nth iteration of
the algorithm. This program can be decomposed by O-D pair since the path
travel times are fixed. The resulting subproblem for pair r-s is given by

min zn(grs) = E c[Sgs [5.5a]
k

subject to

EgS = qrs [5.5b]
k

gk 2 0 V k [5.5c]

This program is obviously minimized by finding the path, m, with the smallest
travel time among all paths connecting r and s, and assigning all the flow to it.
In other words,

s = 4qr nif cm -<C V k [5.6a]

and

gs = 0 for all other paths [5.6b]

In case two or more paths are tied for the minimum, any one of them can be
chosen for flow assignment.

Once the path flows {gs"} are found, the link flows can be calculated by
using the incidence relationships, that is,

Ya = Z C gk a, k a
rs k

.inCI(I*1113- - -·-�--�lllll�--CI - - ------- -�-�I�------ -- --

118

Chap. 5 Solving for User Equilibrium

This solution defines the descent direction dn = y _ xn.

The remaining algorithmic steps of the convex combinations method are
similar to those outlined in Section 4.3. The initial solution can be usually
determined by applying an all-or-nothing network loading procedure to an
empty network, in a way similar to the initialization of the capacity restraint
methods discussed in Section 5.1.

The line search for the optimal move size can be performed with any of
the interval reduction methods, but the bisection method (Bolzano search)
may be particularly applicable. The reason is that the derivative of the objec-
tive function z[x" + a(yn - x)] with respect to a is given by

-" Z[x + c(yn -_ xn)] = E (yn - Xn)ta[Xa + (ya - Xa)] [5.7

which can be easily calculated for any value of a.
The stopping criterion for solving the UE program could be based on

the values of the objective function. As mentioned in Section 3.1, however, this
function is merely a mathematical construct that lacks behavioral or economic
meaning. Consequently, the convergence criterion should be based on the
relevant figures of merit, which in this case consist of the flows and the travel
times. A possible measure of the closeness of a particular solution to equilibri-
um is the similarity of successive O-D travel times. Letting u denote the
minimum path travel time between O-D pair r-s at the nth iteration, the
algorithm can terminate if, for example,

Un _ n-11
rs- us < [5.8a]

rs Urs

Alternatively, a criterion that is based on the change in flows can be used. For
example, the algorithm can terminate if

(x +1
- x:)2

a < K' [5.8b]
x:

a

Other convergence criteria can be used as well. The algorithm itself, when
applied to the solution of the UE problem, can be summarized as follows:

Step 0: Initialization. Perform all-or-nothing assignment based on
ta = ta(), a. This yields {x}. Set counter n = 1.

Step 1: Update. Set t = ta(xa), V a.

Step 2: Direction finding. Perform all-or-nothing assignment based on
{ta}. This yields a set of (auxiliary) flows {ya}.

Step 3: Line search. Find an that solves
x, + a(y- x _)

min J ta(w) d)0 <<1 a

I-_ _ _� __ __ I :_ _ _

119

Part II User Equilibrium

Step 4: Move. Set x + 1' = xa + a(y n - xa), V a.

Step 5: Convergence test. If a convergence criterion is met, stop (the
current solution, {x + }, is the set of equilibrium link flows); otherwise, set
n := n + 1 and go to step 1.

Note the similarity between this algorithm and the capacity restraint
method reviewed in Section 5.1. In fact, if the move size, a, is fixed at c, = 1
for all n, the resulting algorithm is identical to the capacity restraint method.
This observation is important because it means that existing computer pro-
grams that use the capacity restraint method can be easily modified to give a
convergent algorithmic solution to the UE problem (by inserting step 3).

To demonstrate the convergence of this algorithm to the equilibrium
solution, it is applied to the three-link network example depicted in Figure 5.1.
The iterations of this algorithm are shown in Table 5.4. The results in this
table should be compared to the convergence patterns of the heuristic methods
shown in Tables 5.1 to 5.3. From Table 5.4 it is evident that after five iter-
ations (six minimum-path calculations, including the initialization process) the
flows are close to equilibrium; the travel times on all three routes are very
similar.

A comparison of this algorithm with the previous (heuristic) methods, in

TABLE 5.4 Convex Combinations Algorithm Applied to the Network in Figure 5.1

Link
Iteration Algorithmic Objective Step
Number Step 1 2 3 Function Size

0 Initialization t o = 10.0 to = 20.0 to = 25.0
xl= 10.00 x2= 0.00 x3= 0.00

1 Update t: = 947.0 t} = 20.0 t} = 25.0 z(x) = 1975.00
Direction y! = 0 yt = 10 yI = 0 a = 0.596
Move x2

= 4.04 x2= 5.96 x 2 = 0.00

2 Update t2= 35.0 t2 = 35.0 t2 = 25.0 z(x) = 197.00
Direction y2= 10 y2= 0 y2= 0 at = 0.161
Move X3 = 3.39 X3= 5.00 X3 = 1.61

3 Update t
3 = 22.3 t3 = 27.3 t3 = 35.3 z(x) = 189.98

Direction y = 10 y = 0 y3 = 0 a = 0.035
Move X4= 3.62 X4= 4.83 x = 1.55

4 Update t = 26.1 t} = 26.3 t} = 25.3 z(x)= 189.44
Direction y4 = 0 y} = 0 y4 = 10 X = 0.020
Move X5 = 3.54 x5 = 4.73 x5 = 1.72

5 Update t = 24.8 t5 = 25.8 t5 = 25.4 z(x)= 189.33
Direction y5 = 10 Y2 = 0 y3 = 0 c = 0.007
Move x 6 = 3.59 x6= 4.70 x6 = 1.71

Update t6= 25.6 t6 = 25.7 t6 = 25.4 z(x) = 189.33

lsl----------------- -- ----------------� �-----LI ·- _--- ·--- I - - I-..

120

Chap. 5 Solving for User Equilibrium

terms of computational efficiency, can be made on the basis of the flow pattern
at the end of the third iteration (this is equivalent to four all-or-nothing
assignments in terms of computational effort). At this point, the travel times
generated by the convex combinations algorithm on the three paths are t4 =
(26.1, 26.3, 25.3). This situation is much closer to equilibrium than the path
travel times generated by the modified capacity restraint method, t* = (13.7,
27.3, 26.8), or the ones produced by the incremental assignment method,
t* = (69.0, 27.3, 25.0).

As Table 5.4 shows, flow is taken away from congested paths and as-
signed to less congested paths, at each iteration of the convex combinations
method. This process equalizes the travel times among all paths and brings the
system toward equilibrium. The reduction in the objective function value illus-
trated in Table 5.4 follows the pattern demonstrated in Figure 4.9. Again, the
marginal contribution of each successive iteration to the reduction in the
objective function value is decreasing.

In solving the UE program over a large network, each iteration involves
a significant computational cost, due primarily to the effort required to calcu-
late the shortest paths in the direction-finding step. It is important, then, that a
good answer is achieved after a relatively small number of iterations.

In practice, this is not a major problem because of two reasons. First, the
convergence pattern of the convex combinations algorithm is such that the
first few iterations are the most "cost effective." In other words, the flow
pattern after only a few iterations is not very far from equilibrium. Second, the
convergence criteria used in practice are not very stringent and thus conver-
gence can be achieved after only a small number of iterations. This is because
the accuracy of the input data does not warrant the effort needed to obtain an
extremely accurate equilibrium flow pattern.

The number of iterations required for convergence is significantly af-
fected by the congestion level on the network. In relatively uncongested net-
works, a single iteration may suffice since the link flows may be in the range
where the performance functions are almost flat. This means that the updated
travel times are very close to the initial ones, generating a set of link flows that
is quite similar to the initial solution. As congestion builds up, more iterations
are required to equilibrate the network. This effect is demonstrated in Figure
5.2, which depicts the convergence pattern of the convex combinations method
for a medium-sized network, for three congestion levels. The convergence
measure depicted in this figure is based on the objective function values. The
three curves in the figure correspond to low, medium, and high levels of
congestion over the network. As the figure shows, the congestion effect on the
convergence rate can be quite pronounced.

In actual applications, only four to six iterations are usually sufficient to
find the equilibrium flow pattern over large urban networks. This number
reflects common practice in terms of trade-offs among analytical accuracy,
data limitations, and budget, given typical congestion levels.

- - �·_�I

121

Part II User Equilibrium

VERY

10 11 12 13 14 1.

ITERATIONS

Figure 5.2 Convergence rate of the convex combinations algorithm for various
congestion levels. Congestion is measured in terms of L_ xa t(xo)/ xt (O), where
x. and t are the equilibrium flow and travel times. Convergence is measured by the
value of the objective function, normalized between the initial iteration and the 30th
one. At iteration n this measure is {1 - [z(x°) - z(x')]/[z(x) - z(x30)]}100.

5.3 SHORTEST PATHS OVER A NETWORK

As demonstrated in this chapter, both the optimization and heuristic ap-
proaches to the solution of the UE problem require an iterative all-or-nothing
assignment. This assignment includes loading the trips between each origin-
destination pair on to the shortest travel time path connecting this pair. The
problem is thus that of finding the minimum-travel-time paths connecting each
O-D pair for a given set of link travel times. The solution algorithm has to be
very efficient since, in the course of finding the user equilibrium, the minimum-
path problem has to be solved over and over again for each O-D pair at
different flow levels.

The notation used up to this point will be slightly modified for the
purposes of the discussion in this section. Computer memory, when storing a
network, does not keep separate lists of nodes and links, but rather a list of
nodes only. Links are identified by their end nodes. If i and j are nodes (i.e., i,
j E Xr), the link pointing from i to j is indexed by ij (i.e., ij E ,d). Accordingly,
xj and t denote the flow and travel time, respectively, on link ij.

Shortest-Path Algorithm

The algorithm presented here is known in the operations research litera-
ture as the label-correcting method. It finds the shortest path from a given
origin (root) node to all other nodes in the network. Accordingly, it has to be

· i I

122

(

Chap. 5 Solving for User Equilibrium

used for each origin in turn for a complete all-or-nothing assignment to be
performed. The explanation that follows pertains to the calculation of such a
minimum-path tree, that is, the shortest path from one root node to all other
nodes.

The algorithm essentially scans the network nodes in an iterative
manner. At each iteration the algorithm tries to find a path from the root to
the node being scanned that is better (shorter) than the current path. The
algorithm terminates when no better path can be found from the root to any
of the other nodes in the network.

Assume that the network is stored in the computer as a list of links
identified by their end nodes. A travel time (or length) t is associated with
each link ij. In addition, two pieces of information are stored for every node i
in the network: 1) the (current) label of this node, li, and 2) its (current)
predecessor node, pi. The label of node i is the distance from the root node to
node i along the (current) shortest path. The predecessor of node i is the node
just preceding node i along the (current) shortest path. A list of the predecessor
nodes (the p's) is continuously updated so that the minimum paths can be
traced once the algorithm is terminated. (These paths are traced backward
from every node to the root.) The algorithm requires an examination of all the
network nodes at least once. To help manage and keep track of the nodes, the
algorithm uses an additional list called the sequence list. This list includes all
the nodes that have yet to be examined as well as the nodes requiring further
examination.

The algorithm is initialized by setting all labels (which are arranged in a
label list) to infinity (or, in practice, to a very large number), setting all prede-
cessor nodes (in the predecessor list) to zero, and placing the origin node, r, on
the sequence list with label 1, = 0.

Each iteration starts with the selection of a node (say, i) from the se-
quence list for examination. (At the first iteration, the root node is the only one
on the sequence list and therefore is examined first.) All nodes, j, that can be
reached from i by traversing only a single link are tested in the examination
process. If the minimum path to j through i is shorter than the previous path
to j, then lj is updated. In other words, if

li + t < l i [5.9]

then the current shortest path from the root node to j can be improved by
going through node i. To reflect this change, the label list is updated by setting
lj := li + ti, the predecessor list is updated by setting pj := i, and the sequence
list is updated by adding j to it (since this change may affect nodes that can be
reached from j). Once all the nodes j (that can be reached from i) are tested, the
examination of node i is complete and it is deleted from the sequence list. The
algorithm terminates when the sequence list is empty. At this point, the short-
est path from the root to any other node can be found by tracing the prede-
cessor list back to the root node.

Note that the algorithm "fans out" from the root node. It first places all

__·__ - -

123

Part II User Equilibrium

the nodes that can be reached from the origin by traversing only a single link
on the sequence list, and eliminates the origin itself from the list. The algo-
rithm then keeps adding nodes to the list if the label test is met and deleting
nodes already examined. Note that a node eliminated from the sequence list
can reappear on it in a later stage.

Example

Consider the simple network depicted in Figure 5.3. This network in-
cludes one O-D pair and four links. (The number shown next to each link
indicates the travel time associated with it.) The label-correcting algorithm is
used below to find the shortest path from node 1 to node 4.

-.. A

Figure 5.3 Network example for the
t23 = 1 minimum-path algorithm.

First, all labels are initialized to co and all predecessors to zero. Next,
the label of node 1 is changed to zero and it is placed on the sequence list. The
sequence list is then scanned and node 1 is chosen for examination (at this
point there are no other choices). Two nodes can be reached from node 1 (2 or
4); assume that 4 is considered first. Now, since 11 + t1 4 = 4 < 14 = 0o, the
label of node 4 is changed to 4 and this node is placed on the sequence list.
Node 1 is not yet erased from the list, since link 1 2 must be considered
next. This is then followed by considering links 2 -* 3 and 3 -, 4. The contents
of the label list, the predecessor list, and the sequence list for these iterations
are given in Table 5.5. At the fourth iteration, the label of node 4 is changed
from 4 to 3. The fifth iteration only verifies that no link emanates from node 4.
This node is then removed from the sequence list and the algorithm terminates
(since the sequence list is empty). The minimum path can now be traced
backward from node 4 by using the predecessor list.

TABLE 5.5 Contents of the Label, Prediction, and Sequence Lists

Label List Predecessor List

Link Node Node Node Node Node Node Node Node Sequence
Iteration Tested 1 2 3 4 1 2 3 4 List

Initialization - 0 0o so oo 0 0 0 0 1
1 1-4 0 oo oo 4 0 0 0 1 1, 4
2 1-2 0 1 oo 4 0 1 0 1 2,4
3 2-3 0 1 2 4 0 1 2 1 3,4
4 3 -4 0 1 2 3 0 1 2 3 4
5 - 0 1 2 3 0 1 2 3

124

Chap. 5 Solving for User Equilibrium

Note on Computer Implementationt

The label-correcting algorithm discussed here can efficiently determine
the minimum-travel-time path from an origin node to all other nodes in a
network. The algorithm can be applied to very large networks, but care must
be taken in coding the algorithm. This section discusses some computer im-
plementation issues and gives some guidelines for efficient coding of the label-
correcting method.

The first issue of concern is the method of storing the network. In de-
scribing the algorithm, it was assumed that a list of the network links is
available. Consider, for example, the network depicted in Figure 5.4 on page
126. This network can be described by the list of its links identified by their
end nodes. For example:

"From" Node "To" Node

1 2
2 3
3 6
1 4
4 5
5 6
1 5
5 2
2 6
2 5

In addition, each link is associated with some travel time, as shown in the
figure. At each iteration of the algorithm, all links emanating from a particular
node have to be tested. Thus, to avoid repeated searches of the link list, it is
advantageous to sort the links so that all links emanating from the same node
are stored adjacently: that is,

"From" Node "To" Node

1 2
1 4
1 5
2 3
2 6
2 5
3 6
4 5
5 2
5 6

tThis section can be skipped without loss of continuity.

...I --- ----

125

Part II User Equilibrium

"From" .To" Travel
Node Pointer Node Time

T 1 2

o 4 3

7 6

(D 8 1

(I 9i () 2®jL 0 2

53 1 3

2~ 3

0 5
vHt

Ie(i
Figure 5.4 Network example demonstrating a forward star network presentation. (The numbers
on the links show the links' travel times.)

where "from" nodes are arranged in ascending order. To save space in com-
puter memory, this list can be stored in a "forward star" form, where each arc
is represented only by its ending node. A pointer is kept for each node,
indicating the position, in the link list, of links beginning with this node. The
right-hand side of Figure 5.4 demonstrates this pointer representation. For the
example under consideration, this pointer can be thought of as an array, B, of
length 5 with the following entries:

B(1)= 1

B(2) = 4

B(3) = 7

B(4) = 8

B(5) = 9

Instead of keeping two link-length arrays,t the network can thus be stored
with one link-length and one node-length array. Using this forward star form,
all the links emanating from each node can be processed easily.

The management of the sequence list is another area in which significant
computational gains can be made. First, note that all the nodes that represent
links emanating from a particular node under examination should be tested
consecutively. This keeps the sequence list small and avoids unnecessary
searches for the location of a particular link.

To avoid duplicating the computation, nodes should be added to the
sequence list only if they are not already on it. As it turns out, it is advanta-

tA link-length array includes as many components as the number of links in the network.
Similarly, a node-length array includes as many entries as there are nodes in the network.

I

126

Chap. 5 Solving for User Equilibrium

geous to process the sequence list (i.e., to choose candidate nodes for examin-
ation) in a particular order. In general, the sequence list is processed from the
top down, and nodes are added to the list by placing them at the bottom. (In
other words, the sequence is treated as a queue.) If, however, a node to be
added has already been on the list (and examined and removed from it), it
should be placed on the top (meaning that it would be examined next). This
strategy of managing the sequence list has been shown to be most effective for
computing shortest paths over transportation networks.

Figure 5.5 depicts a flowchart of the label-correcting algorithm which
utilizes the forward star form and uses the aforementioned strategy for manag-
ing the sequence list. Note that, in the computer, this list is not managed by
physically moving all nodes in order to place a node at the top of the list.
Instead, the sequence list is a node-length array, say s, containing the following
information regarding the status of each node in the sequence list:

- 1 if node i was previously on the list but
is no longer on it

0 if node i has never been on the list
s(i) = + j if node i is on the list and j is the next

node on the list
+ o if node i is on the list and it is the last

node on the list

In addition, the top and bottom of the list are identified by special pointers.
Placing a node, j, at the top of the list means only that s(j) = m if m was the
previous first node on the list, and the top pointer is changed to point at j.
Placing a node, j, at the bottom of the list is done by setting s(j)= co, s(n):=j
if n was the previous last node on the list, and the bottom pointer is changed
to point at j.

This concludes the description of the shortest path algorithm. The re-
mainder of this section discusses some related numerical issues regarding the
solution of user-equilibrium problems.

Transportation networks are characterized by a number of links/number
of nodes ratio of approximately 4. For such networks, the computational effort
associated with the identification of each minimum-path tree grows linearly
(on the average) with the size of the network analyzed. In other words, the
computer CPU timet needed is proportional to the number of nodes (and
links) in the network. This observation can be used to assess the compu-
tational effort associated with the solution of the UE program (using the
algorithm outlined in Section 5.2).

Finding the minimum paths is the most computation-intensive compo-
nent of each iteration of most UE solution procedures (and, in particular, the
convex combinations algorithm). The other components (loading the mini-

tCPU (central processing unit) time is a measure of the effort required by the computer to
execute a program.

__�______ __

127

NO

Yes

Yes

Figure 5.5 Flowchart of the label-correcting shortest-path algorithm. (The set .£i
includes all nodes that can be reached from i by traversing a single link.)

128

--

Chap. 5 Solving for User Equilibrium

mum paths, the line search, the updates, and the convergence checks) do not
require more than a few percentages of the total CPU time. Consequently, the
computational effort associated with this application of the convex combi-
nations algorithm is proportional to the product of the number of iterations,
the number of originst (which determines the number of minimum-path trees
to be calculated at each iteration) and the number of nodes (which determines
the effort needed to calculate each tree). In other words,

computational (number of number of number of [
costs J iterations origins/\ nodes [5.10]

where K is a constant of proportionality that is computer specific.

5.4 SUMMARY

The focus of this chapter is on finding the user-equilibrium flow pattern over a
transportation network. The first section reviews the two most widely used
heuristic techniques for solving this network equilibrium problem. These in-
clude capacity restraint methods, which are not guaranteed to converge, and
incremental assignment methods, which may "converge" to a nonequilibrium
solution. The inadequate performance of these heuristics has motivated the
development of the equivalent minimization approach used in this text.

The convex combinations algorithm described in Section 4.3 can be
easily applied to the solution of the UE equivalent minimization program. The
solution of the linear program associated with each step of this algorithm
requires merely an all-or-nothing network loading. Such a loading involves the
assignment of all flow between each O-D pair to the minimum-travel-time
path connecting this O-D pair. The problem of finding the set of all relevant
minimum paths is a well-known problem in operations research for which
many efficient algorithms are available.

One of the most efficient algorithms for finding the minimum path from
a single node to all other network nodes is the label-correcting algorithm
described in Section 5.3. This algorithm is extremely efficient and its execution
can be expedited even further by careful coding and list-processing procedures.

The use of the convex combinations method in conjunction with the
label-correcting (or any other minimum-path) algorithm for the direction-
finding step provides an easy and efficient approach to the minimization of the
equivalent UE program. The convergence of the convex combinations method
is asymptotic in nature; the marginal contribution of each additional iteration

tIf the number of destinations is smaller than the number of origins, the all-or-nothing
assignment can be carried out by rooting the minimum-path trees at the destinations. Each tree
would then give the minimum path from each of the network nodes to the destination root. The
total computational costs associated with solving the UE program are, then, proportional to the
product of the number of iterations, the number of nodes, and the minimum of the number of
origins and number of destinations.

__

- -

129

Part II User Equilibrium

to the reduction in the value of the objective function is decreasing. The
number of iterations required for convergence is primarily a function of the
congestion over the network. The computational effort needed for each iter-
ation is proportional to the number of origins (or number of destinations, if it
is smaller) and the size of the network.

5.5 ANNOTATED REFERENCES

The two heuristic method presented in Section 5.1 are embedded in many of
the early transportation planning computer packages. The U.S. Federal High-
way Administration (FHWA) includes a modified capacity restraint method in
its Urban Transportation Planning Package (Federal Highway Adminis-
tration, 1977). The incremental assignment method was used in The DODO-
TRANS package developed at M.I.T. by Manheim and Ruiter (1970). Both
types of procedures were criticized by a number of researchers on the grounds
mentioned in this chapter. For example, Sheffi and Daganzo (1978) showed the
divergence property of the capacity restraint method for a contrived network,
while Ferland et al. (1975) demonstrated the problems associated with the use
of incremental assignment. The example used in Section 5.1 to demonstrate
both the problems associated with the use of heuristic methods and the con-
vergence of the convex combinations method follows the exposition by Eash et
al. (1979). Currently, the network assignment package UROAD, which is part
of the UMTA Transportation Planning System (UTPS) supported by the U.S.
Urban Mass Transportation Administration, includes the convex combi-
nations algorithm.

The application of Frank and Wolfe's convex combinations method to
the solution of transportation network equilibrium was first suggested by
Bruynooghe et al. (1968) and applied by Murchland (1969). Shortly thereafter
it was used by LeBlanc et al. (1975), who coded and tested the algorithm for a
small city. At the same time, Nguyen (1974b) suggested the use of the convex
simplex method for solving the UE equivalent minimization program. Nguyen
(1974a) also suggested the use of the reduced gradient method and a modified
reduced gradient method for this purpose. In some side-by-side comparative
experiments, Florian and Nguyen (1976) found that even though the convex
simplex method converges somewhat faster than the convex combinations
method, it requires more computer memory. Consequently, the overall compu-
tational effort required by both methods is similar. The latter reference also
includes an interesting validation study, where the equilibrium flows were
found to be in satisfactory agreement with ground counts in the city of Win-
nipeg, Canada. Bovy and Jansen (1981) also demonstrate a high level of agree-
ment between ground counts taken in the city of Eindhoven, the Netherlands,
and the flows resulting from a user-equilibrium assignment. Figure 5.2 is taken
from Mimis (1984), who used a "hub and spokes" simulated network to study
some numerical issues in conjunction with equilibrium assignment algorithms.

·Ij _

130

Chap. 5 Solving for User Equilibrium

The minimum-path algorithm presented in Section 5.3 is the label-
correcting algorithm suggested by Moore (1957), with the modification for
handling the sequence list suggested by Pape (1974). The presentation of the
algorithm and the discussion of the computer implementation issues follow
Dial et al. (1977), who tested a number of the most widely used minimum-path
algorithms and concluded that the Moore-Pape algorithm is the most efficient
for transportation networks. This reference includes a discussion and detailed
presentations of many of these algorithms.

5.6 PROBLEMS

5.1. Show how the convex combinations algorithm can be used to solve the system
optimization assignment problem discussed in Section 3.4. Describe the algorithm
in detail. Should the objective function values be used as the basis for a conver-
gence criterion?

5.2. Find the user-equilibrium flow pattern over the network shown in Figure P5.1.
The O-D flows are:

1- 2 2 flow units

3 - 2 2 flow units

and the volume-delay curves are t = 1 + 0.15(x/a)4, where a is the link's number
shown in the figure. Perform three iterations of the convex combinations method.

Figure P5.1

5.3. Streets and roadways cannot carry more than a certain amount of vehicular flow
known as "capacity."
(a) Formulate the UE problem assuming that each network link is associated

with a capacity c,.
(b) Using the ideas outlined in the description of the feasible direction methods in

Section 4.2, devise a modification to the convex combinations method de-
scribed in Section 5.2 so that the algorithm would solve the capacity-
constrained UE problem. You can assume that an initial feasible solution is
given and that the performance curves are asymptotic to the capacity flow, for
example, t(x.) = 1/(c - x).t

(c) Devise a method for finding an initial feasible solution for your algorithm.

tMathematically, it is required that the performance curves would satisfy

lim ta() dco = oo
X,-c, o

as shown by Daganzo (1977c).

_ _

__··_

131

Part II User Equilibrium

5.4. Program [5.4] defines the linearization step of the convex combinations algo-
rithm in terms of path flows. Outline all the other algorithmic steps associated
with the application of this algorithm to the UE equivalent program, in terms of
path flows. Can the algorithm be executed in terms of path flows?

5.5. In transportation planning applications the analyst may delete and add links to
the network. Discuss the problems that the forward star representation poses for
easy addition and deletion of links. How can these problems be overcome?

5.6. Use the label-correcting algorithm to find the minimum path from node 1 to all
other nodes in the network depicted in Figure 5.4.

5.7. Explain why the particular strategy described in the text for managing the se-
quence list is advantageous for transportation networks. (As an aside, note that it
is not particularly advantageous for other types of networks, such as communi-
cation networks.)

5.8. Write a subroutine that would take as input a network in forward star repre-
sentation (transferred in a COMMON block or through GLOBAL variables) and
an origin node (transferred in the calling statement), and would compute the
minimum paths from the origin to all other nodes. The result is to be returned in
another COMMON block or a set of GLOBAL variables (of predecessors).

5.9. Write an input subroutine that would read network link information (including
starting node, end node, and performance function parameters) in random order
and store it in a forward star representation. Include a flowchart.

5.10. Use the results of Problems 5.8, 5.9, and 4.10 (or 4.11) to write a computer code
that will find the equilibrium flows over a transportation network.

5.11. The operation research literature includes algorithms for finding the minimum
path from every node of a network to every other node. Indicate under which
circumstances such algorithms will be useful and explain why they are not used in
transportation planning applications.

___.

132

Part III extends in several directions the UE framework discussed in previous
chapters. Chapter 6 focuses on the variable-demand problem, in which the O-D
trip rates are not assumed to be fixed but rather a function of the equilibrium travel
times. The concepts developed there are used to formulate a model in which the
network includes the transit mode, in addition to the automobile network, and the
modal split is modeled explicitly. Chapter 7 extends the original UE framework in
another direction by assuming that the total number of trips leaving each origin
node is known but that their destination is to be determined in conjunction with
the equilibration process. Chapter 8 removes the assumption used throughout Part
11 that links are independent of each other, and Chapter 9 develops a framework in
which many travel choice dimensions (i.e., whether to take a trip, where to go, by
which mode, and what route to use) can be modeled simultaneously.

133

·..·. ._· __�_��_�_ __

i

User Equilibrium

with Variable Demand

The formulation of the user-equilibrium problem given in Chapter 3 assumes
that the trip rate between every origin and every destination is fixed and
known. In reality, however, these trip rates may be influenced by the level of
service on the network. For example, as congestion increases, motorists may
decide to use a different mode of travel (e.g., subway), shift the time of travel
(outside the design period), or forego some trips altogether.

In order to take this phenomenon into account, the trip rate, q,, be-
tween every O-D pair r-s in the network can be assumed to be a function of
the travel time between r and s. In other words,

q,s = Ds(U,s) V r, s

where u,, is the minimum travel time between r and s, and Ds() is the demand
function (for vehicular trips) between r and s. Typically, the form of the
demand function will be the same for all O-D pairs. It can include, however,
O-D specific parameters reflecting population size, income distribution, and
vehicle ownership for origin nodes, as well as employment intensity or retail
activity variables for destination nodes. For example, the demand function
may be q,- = A, Bsf(u,), where A, and Bs are known parameters associated
with origin r and destination s, respectively, and f(u,r) is a function of u,8 . The
parameters of the demand function may also reflect other travel opportunities
between O-D pair r-s by representing, for example, the level of service by
other modes of travel (such as transit) and at other times of day, between r and
s. The only argument of the demand function between r and s, however, is the
O-D travel time, u,r.

134

Chap. 6 User Equilibrium with Variable Demand

The demand function can be expected to be monotonically decreasing
(or at least nonincreasing) in the O-D travel time. In other words, as u,. grows,
q, decreases, and vice versa. This function is also bounded from above. For
example, the maximum number of vehicular trips generated between a given
origin and a given destination in a certain design period may be bounded by
the population size at the origin.

The problem addressed in this chapter is that of finding the link flows,
the link travel times, and the O-D trip rates that satisfy the UE condition. At
equilibrium, the travel times on all used paths between any O-D pair are
equal, and are also equal to or less than the travel times on any unused paths.
In addition, the O-D trip rates satisfy the demand functions. These conditions
define the user equilibrium with variable demand (which is also known as the
problem of UE with elastic demand).

The heuristic algorithms described in Section 5.1 can easily be modified
and applied to the problem of determining the flow pattern associated with the
variable-demand UE conditions. The results, however, would prove to be as
unsatisfactory as before. This chapter formulates this problem as an equivalent
minimization program and shows how this program can be solved. This equiv-
alent minimization formulation is described in Section 6.1, which also dis-
cusses the related equivalence and uniqueness conditions. The solution algo-
rithm is described in Section 6.2. Section 6.3 demonstrates how algorithms for
equilibration of networks with fixed demand can be used to solve the variable-
demand equilibrium problem. Finally, these ideas are applied in Section 6.4 to
the formulation and solution of an extended equilibrium problem that includes
two travel modes.

6.1 EQUIVALENT MINIMIZATION FORMULATION

This section presents the equivalent UE minimization program for the
variable-demand case. It demonstrates that minimizing this program is, in fact,
equivalent to solving the equilibrium equations and that the program has a
unique solution.

Using the notation introduced in Chapter 3, consider the program

min z(x, q) = to(Co) do - D ̀ (co) do [6.1a]

subject to

fIs = qs V r, s [6.1b]
k

f' 2 0 V k, r, s [6.1c]

q, > 0 V r, s [6.1d]

where D 1(.) is the inverse of the demand function associated with O-D pair
r-s, q = (..., qrs, . . .), and x = f, ,k f7ras,s k, V a, as before.

_·___ ___�_�_

135

Part III Extensions of User Equilibrium

The constraint set for the variable-demand problem (Eqs. [6.1b] and
[6.1c]) is similar to the one used for the fixed-demand formulation (see Equa-
tions [3.3]), with the added requirement that q,, be nonnegative. This require-
ment highlights the fact that q,, is a variable in this formulation, rather than a
constant.t The objective function in Eq. [6.1a] includes an additional term (as
compared with Eq. [3.3a]), which is the sum of the integrals of the inverse
demand functions. Note that D (() is a decreasing function of the O-D travel
times. This condition is used later in this section to establish the uniqueness of
the minimum of the equivalent minimization program [6.1].

Motivation and Interpretation

Before the equivalence between the solution of program [6.1] and the
network equilibrium conditions is shown formally, it is illustrated for the
simple network shown in Figure 6.la. This network is composed of exactly one
link connecting a single O-D pair. The performance function of this link is
t = 1 + x, where x is the flow, and the demand function is given by x = 5 - t.
Figure 6.lb depicts this performance function and the (inverse) demand func-
tion. At the equilibrium point both of these equations hold and the solution of
this simple system of equations is x = 2 and t = 3.

If the equivalent mathematical programming formulation is valid, this
same solution should be obtained by minimizing program [6.1] for the simple
network at hand. Given that the inverse demand function is t = 5 - x, the
equivalent program is formulated as

min z(x) = (1 + o) do- (5 - co) dco [6.2]

In this case, x denotes both the link flow and the O-D flow and, naturally, no
flow conservation constraints are needed. The flow that minimizes this ex-
pression is found by differentiating z(x) to obtain (as the reader can check)

dz
-= 2x -4
dx

and setting dz/dx = 0. This yields x = 2 (corresponding to t = 3), as expected.
The minimization represented by Eq. [6.2] can be viewed graphically as

a maximization of the difference between the area under the inverse demand
curve and the area under the performance function. [Recall that the mini-
mization of -f(x) is equivalent to the maximization off(x).]

Figure 6.2a on page 138 illustrates this difference in areas for a case
where the flow, x (a possible solution of the system), is smaller than x* (the
point where the demand and the performance lines intersect). Obviously, this
area can be enlarged by increasing x (i.e., moving toward x*). If, however,

tThe nonnegativity of q,, does not have to be required explicitly in this formulation since
constraint [6. d] is satisfied automatically if both constraints [6.1b] and [6.1c] are satisfied.

··

136

Chap. 6 User Equilibrium with Variable Demand

@____ _ ,__ (i)_ [al

t
[travel

time

t*
(b]

Inction

K
1 2 3 4 5 [flow

X*

Figure 6.1 Equilibrium conditions with variable demand: (a) a one-link network;
(b) performance and inverse demand functions for the one-link network in (a).

x > x*, then one of the resulting triangular areas will have a minus sign and
the resulting net area is that shown in Figure 6.2b (if x >> x*, the net area
difference will be negative). This area, then, can be enlarged by decreasing x
(again, moving toward x*). The point at which the area difference is maxi-
mized is thus x = x*; the associated area is depicted in Figure 6.2c. Maximiz-
ing this area therefore brings about the same result as the solution of the
equilibrium equations.t

The remainder of this section shows formally that the solution of the
minimization program [6.1] is equivalent to the user-equilibrium conditions
when demand is variable. This program is also shown to have a unique solu-
tion in terms of the link flows and the O-D trip rates.

Equivalence Conditions

As with the simple UE program, in order to ensure that the equilibrium
conditions are met at the point where program [6.1] is minimized, the first-
order conditions of the program must be equivalent to the equilibrium con-
ditions. The general form of these conditions for a mathematical program with
equality and nonnegativity constraints was derived in Section 2.3. Using the
same procedure here, the Lagrangian of the program is set up, differentiated,
and solved.

fNote that this area cannot be interpreted as consumer's surplus. As noted by Beckman et
al. (1956), the link performance functions reflect average and not marginal travel time (or travel
cost). Such an interpretation would, therefore, be wrong.

__��__�__ _ _

137

Part III Extensions of User Equilibrium

t

[a]

X x

t

x* x

)X

x
x*

Figure 6.2 Interpretation of the variable-demand objective function as maximiza-
tion of the areas between the inverse demand and the performance functions.

Let the objective function in program [6.1] be decomposed as follows:

min z(x, q)= min {z(x) - z2(q)} [6.3]
where

zl(x) = E ta(co) do

z2 (q) = E D- 1(co) dwo
rs Jo

Note that z(x) can be written in terms of path flows by using the incidence
relationships, and thus x = xa(f). The Lagrangian associated with [6.1] can
then be written as

L(f, q, u) = zl[x(f)] + z2(q) + q.,- f) [6.4a]

138

Chap. 6 User Equilibrium with Variable Demand

where u = (..., u,, ...) is the vector of Lagrange multipliers associated with
constraints [6.1b]. This Lagrangian should be minimized with respect to the
flow variables (and maximized with respect to the dual variables) subject to the
following constraints :t

f' 2 0 V k, r, s [6.4b]

q,, > 0 V r, s [6.4c]

The first-order conditions for this program are:

aL(f, q, u)
Lk aq,) = 0 V k, r, s [6.5a]

aL(f, q, u) > 0 V k, r, s [6.5b]
of 7

q 8L(f, q, u) V r[6.5c]

aL(f, q, u)
Ž0 Vr,s [6.5d]

Lf, qu)= 0 V r, s [6.5e]
aurs

f 20 k, r, s [6.5f]

q,, 2 0 V r, s [6.5g]

Conditions [6.5a] and [6.5b] replace the standard "zero derivatives" con-
dition due to the nonnegativeity constraint on the path-flow variables, {f['}.
The same holds true for constraints [6.5c] and [6.5d], which play the same
role for the O-D flow variables, {q,,}. Condition [6.5e] results from the La-
grangian being maximized with respect to u, which is unconstrained. In order
to apply these conditions to the program at hand, the derivatives of the
Lagrangian with respect to the path flow and the O-D trip rates should be
calculated explicitly.

The derivative of the Lagrangian with respect to a general path-flow
variable, f f", is

aL() af {z[xf)]-z2(q)- + E u,.(q. - fk)}

The second term in the brackets, z2(q), is not a function of f and can therefore
be dropped from the derivative. What is left is identical to the derivative of the

tThe nonnegativity of q,, should be explicitly required here since the problem of finding
the stationary point of the Lagrangian is not subject to constraints [6.1b]. These constraints are
part of the Lagrangian function itself.

__

139

Part III Extensions of User Equilibrium

original UE program with respect to a path-flow variable (see Eq. [3.15]).
Consequently,

aL(f, q, u) aL(f, u)
,Ofm a- c" umn [6.6]

where c"n is the travel time on the Ith path connecting origin m to destination
n.

The derivative of the Lagrangian with respect to a typical O-D trip rate,
qmn, can be simplified to aL(q, u)/Oqm,, since z(x) can be dropped from the
derivative. This derivative is therefore

OL(q, u) 8 j. D,') dw + j U -Z

Dr o ur rs - k
Oqrnn , qmn rs rrs k)

= -Dmnl(qm) + umnr [6.7]

The first-order conditions are thus (see Eqs. 6.5)

f (c - urs) = 0 V k, r, s [6.8a]

c, - urs > 0 V k, r, s [6.8b]

qrs[us - Dr, '(q,s)] = 0 V r, s [6.8c]

u,5 - D-,'(q,5) > 0 V r, s [6.8d]

q,s - f7 = V r, s [6.8e]
k

fk 2 O V k, r, s [6.8f]

q,_ 2 0 V r, s [6.8g]

Equations [6.8a] and [6.8b] state the user-equilibrium conditions as in the
fixed-demand case analyzed in Chapter 3 (see Eqs. [3.16a] and [3.16b]).t
These equations specify that the travel time on any path connecting a given
O-D pair must equal the minimum-path travel time if the flow on this path is
positive. If the flow on this path is zero, its travel time must be greater than (or
equal to) the travel time on the shortest path.

Conditions [6.8c] and [6.8d] have a very similar interpretation. If the
O-D trip rate between a given O-D pair, say r-s, is positive, then, for Eq.
[6.8c] to hold, Eq. [6.8d] must hold as an equality. In other words,

u,. = D '(q,,) [6.9a]

Both sides of this equation can be inverted to obtain

D,.,(urs) = q, [6.9b]

tThe variables in Eqs. [6.8] indicate values at the optimal solution point. The asterisks are
omitted for clarity of presentation.

I�_ ______I_ _� ____·�� _ �___ I _I ________

140

Chap. 6 User Equilibrium with Variable Demand

Thus, if q,, > 0, it must be given by the demand function. If, however, q, = 0,
then from Eq. [6.8d]

u, Ds (q,)

meaning that the O-D travel time may be too high to induce any O-D flow.

Uniqueness Conditions

To prove that the equivalent variable-demand UE program [6.1] has a
unique solution, it is sufficient to show that the objective function is strictly
convex everywhere. The first part of the objective function,

zl(x) = |ta(co) do
a JO

is strictly convex if the functions ta(Xa) are increasing in xa, as shown in Section
3.3.

The demand function for each O-D pair, Dr,(u,r), is a monotonically
decreasing function of its argument. It follows that its inverse, D 1(.), should
also be a decreasing function. The integral of a decreasing function is strictly
concave and the sum of strictly concave functions is a strictly concave func-
tion. Thus

z2(q) = j D (w) dcorso
is strictly concave. The negative of a strictly concave function is, however, a
strictly convex function. Thus

z(x, q)= zl(x)- z2(q)

is the sum of two strictly convex functions, meaning that z(x, q) is strictly
convex.

The strict convexity of z(x, q) implies that program [6.1] has a unique
solution in terms of O-D trip rates and link flows. As with the simpler fixed-
demand problem discussed in Chapter 3, the solution of the variable-demand
program (and the equilibrium condition itself) is not unique in terms of path
flows. In other words, the equilibrium link flows can be achieved through
many combinations of path flows.

6.2 SOLUTION ALGORITHM

This section demonstrates how the equivalent minimization program repre-
senting the variable-demand equilibrium problem can be solved. The formu-
lation of this program was shown in the preceding section to be

min z(x, q) = E t.(wr) do - D 1(wo) do [6.10a]
a o ra o

_ _

141

Part III Extensions of User Equilibrium

subject to

f[k 2 O v r, s [6.10b]

qs < Vs V r, s [6.10c]

qrs = fr V r, s [6.10d]
k

Constraint [6.10c] was added to this formulation as an upper bound on the
total flow from origin r to destination s (recall that the demand function was
assumed to be bounded from above). This constraint is added for compu-
tational reasons (as explained below); it obviously does not change the prob-
lem if it is set high enough (so that it would never be binding).

Program [6.10] can be formulated exclusively in terms of path flow
variables. The link flows are then given by the incidence relationships,

xa = (f)= E ZfZ ¥ a
rs k

and the path-flow variables are given by the flow conservation constraint

qrs = qs(f`) = f s V r, s
k

Using these transformations, the equivalent program for user equilibrium with
variable demand can be expressed as

min z(f)= Z ta(o) dro - D d [6.(o)a]taJ wO rs JC D,'(w) Odr[6.11a]

subject to

fS 2 0 V k, r, s [6.11b]

Ef' < I, V r, s [6.11c]
k

The approach used to minimize this program is based, again, on the
convex combinations algorithm. As shown in Section 4.1, this algorithm is a
feasible descent method. The descent vector at the nth iteration is given by the
direction from the current solution to the point that solves the linear approxi-
mation of the objective function. This linear approximation results in a linear
program that is expressed in terms of a set of auxiliary variables (see Eqs.
[4.23]). For the UE program the variables are the path flows, {fr,}, and the
associated link flows, {x,}. The corresponding sets of auxiliary variables are
{gk} and {Ya}, as shown in Section 5.2 (see Eqs. [5.3]). The minimum of the
resulting auxiliary LP was found by solving

min z"(f) = E E af I-kS [6.12]afr

subject to the original constraints, in terms of {gs} (see Eqs. [5.4]). The mini-
mum of this program, was then used to define the descent direction.

_ _ _

142

Chap. 6 User Equilibrium with Variable Demand

As in Section 5.2, the variable g[' denotes the auxiliary path flow corre-
sponding to f s. In other words, Z, Zk gr'6,k = y, V a, where Ya represents
the auxiliary link-flow variable associated with link a. Note that unlike the
case in Eqs. [5.3] (where Zk grk = qr,, V r, s), the O-D flows are variables in
this program and thus Zk gS = r,, where v,r is the auxiliary O-D flow vari-
able corresponding to q,.

To solve program [6.11] by using the convex combinations method,
partial derivatives of the objective function z(f) have to be calculated since
those are the coefficients of the auxiliary LP. A representative partial deriva-
tive of z(f) at the nth iteration of the algorithm is given by

az[x(fn), q(f")] = c'(f") - D-n(f") [6.13]
Of?"

The linear program corresponding to the nth iteration of the solution of
program [6.11] can now be expressed as

min z"(g) = E E [cr"- D 1(q)]gk [6.14a]
rs k

subject to

gs'> 0 V k, r, s [6.14b]

g' < Vq, r, s [6.14c]
k

where c" is the travel time on path k between origin r and destination s at the
nth iteration [i.e., c"' = cr'(f")], and q, is the value of the O-D flow between r
and s at the nth iteration of the algorithm.

In solving program [6.14], note that the term in brackets in the objective
function (Eq. [6.14a]) is constant with respect to g. Furthermore, constraint
[6.14c] applies to each origin-destination pair independently. These two ob-
servations imply that z"(g) can be minimized by concentrating on each O-D
pair individually. The problem for O-D pair r-s is given by

min z"5 (gr') = N [c - D-,(qr,)]gkr [6.15a]
k

subject to

grS 0 V k [6.15b]

g k <]rs' [6.15c]
k

The set of path flows, gr, that solves program [6.15] can be determined
simply by inspection. The solution requires assignment of as much flow as
possible (i.e., q,,) to the path k for which [cr, - Ds '(q")] is the smallest. If this
quantity is positive for all paths, no flow should be assigned to any path. The
use of such a procedure will result in the lowest possible value of objective
function [6.15a]. For a given O-D pair, the path for which [c," - D,- '(qrn,)] is

�__�_�

143

Part III Extensions of User Equilibrium

the most negative is m such that CrmS = minv k {c"} (Cr" also equals the O-D
travel time at the nth iteration, ur). This minimization rule can, then, be stated
formally as follows:

If c " < Drs(qrs), set gm = qr, and g," = 0 k m [6.16a]

If c, > Drs,(q), set g Vf = O t k [6.16b]

In case c = Dl(q), either [6.16a] or [6.16b] can be followed. The same
procedure can be repeated for each origin-destination pair in order to mini-
mize program [6.14].t

Once this assignment process is completed, the auxiliary link-flow and
O-D trip-rate variables can be calculated as follows:

ya = E gk a, k V a [6.17a]
rs k

vr= s V r, s [6.17b]
k

With these variables the descent direction is a vector d" with elements (y - x)
and (vr - q').

Note that the direction-finding step requires computation of the shortest
paths connecting all O-D pairs at each iteration, as was the case with the fixed
demand problem. The additional computational effort required for the vari-
able demand problem is very small; it includes only a comparison of the travel
time on the current shortest path with the current value of the inverse demand
function (see Eqs. [6.16]).

The move size in the convex combinations method is determined by
finding a scalar, c,, which minimizes the objective function along the descent
direction. In other words, an is the value of a that minimizes z(x" + ad"). For
the variable-demand minimization [6.10], this one-dimensional minimization
program is given byrxo t My X,) 4qr, + (, - q.)

min z() = e ta(oj) dc - D f 1 (() do [6.18a]
a O rs

subject to

0 < a< 1 [6.18b]
This problem can be solved by using any of the interval reduction methods
discussed in Section 4.1.

Once the optimal move size, an, is found, the link and O-D flow vari-
ables can be updated by setting

xa 1 = xa + [(y - x) [6.19a]

qrn = qs + ao(v, - q~) [6.19b]

tThe need for the upper bound constraint [6.10c] in the original formulation is now clear;
without it, program [6.14] may be unbounded.

I _

144

Chap. 6 User Equilibrium with Variable Demand

If convergence is not achieved, the link travel times and the inverse demand
function are updated [i.e., t(x') and D-s'(qs) are computed], the new mini-
mum path connecting each O-D pair is calculated and a new set of auxiliary
flows is obtained by following Eqs. [6.16].

Convergence can be checked for by using the objective function values at
successive iteration or a flow-based criterion, as discussed in conjunction with
fixed-demand UE problems. The equilibrium conditions can, however, be
checked for directly, by calculating the closeness of the O-D travel time to
those implied by the (inverse) demand function, in addition to the closeness of
consecutive O-D travel times (see Eq. [5.8a]). In other words, at convergence

n n-
Urs Urs r, s

and

Dr- l(q4) un for all r-s for which q > 0.

These requirements imply a convergence criterion such as

ID-(q)- Us I I- Us- 1
n + E n _ c K[6.20]

rs Urs rs Urs

where K is a dimensionless convergence criterion and the first summation
includes only the O-D pairs with positive flow. (Why?) In practice, each of the
sums in Eq. [6.20] can be used independently as a basis for a convergence
criterion.

The algorithm can then be summarized as follows:

Step 0: Initialization. Find an initial feasible flow pattern {x}, {qs}.
Set n = 1.

Step 1: Update. Set t = ta(xa), V a; compute D l(q), V r, s.

Step 2: Directionfinding. Compute the shortest path, m, between each
O-D pair r-s based on {tg}; execute the assignment rule shown in Eqs. [6.16].
Following the transformation of Eqs. [6.17], this assignment yields an auxili-
ary flow pattern {ya}, {rs}.

Step 3: Move size. Find 0a that solves program [6.18].

Step 4: Flow update. Find {xn+ } and {qs '1} by using Eqs. [6.19].

Step 5: Convergence criterion. If inequality [6.20] holds, terminate.
Otherwise, set n := n + 1 and go to step 1.

The next section presents a different perspective on the solution algo-
rithm, that of using a special network representation. This approach to solving
network equilibrium problems is used extensively in the remainder of the text.

I _ __ _I_ ~~~~ II C~~~~_

145

Part III Extensions of User Equilibrium

6.3 SOLUTION BY NETWORK REPRESENTATION

Adapting the convex combinations algorithm to the solution of the variable-
demand assignment problem is a relatively straightforward task. Even this
adaptation, however, may be unnecessary; a simple change in the repre-
sentation of the problem can make it amenable for solution with fixed-demand
equilibration algorithms. This section deals with this topic, and includes two
such formulations, the zero-cost overflow formulation and the excess-demand
formulation. In both cases, the approach requires the addition of "virtual" or
"dummy" nodes and links to the network. These network modifications make
it possible to solve a fixed-demand UE problem over the augmented network,
obtaining a solution for the variable-demand problem over the original net-
work.

The Zero-Cost Overflow Formulation

Figure 6.3a depicts a network representing an urban street system, and
highlights a particular origin-destination pair, r-s. Figure 6.3b shows a modifi-
cation of this network in which every O-D pair is augmented to include a
"dummy" destination node (designated r' in Figure 6.3b) in addition to node
s.t The modified representation of O-D pair r-s also includes a "generating
link" (indexed sr') leading from s to r' and a "zero-cost overflow link" (indexed
rr') leading directly from the origin r to the new dummy destination node, r'.
The performance curves for these new links are:

tSr, = -Drs'() V r, s [6.21a]

for the generating link, and

t,, = 0 V r, s [6.21b]

for the (zero-cost) overflow link. To help distinguish between the various com-
ponents of the modified network, the original graph representing the streets
and intersections will be referred to from now on as the basic network. Thus
the basic network corresponding to the one in Figure 6.3b is that shown in
Figure 6.3a.

Assume now that a fixed number of trips, qs, as to be assigned between

tAs it turns out, it is sufficient to have one dummy destination node associated with every
origin. This is the reason for the notation used for these nodes. The explanation in this section
may be easier to understand though, if the reader assumes that each destination dummy node is
unique to each O-D pair.

+Even though the travel time on link s-r' may be negative, the modified network includes
no negative cycles, by construction. In other words, there are no situations in which it is advanta-
geous to keep traversing a given path since the net travel time along this path is negative. Such
situations may arise in some networks containing negative-travel-time links, in cases where these
links are part of a path leading back to its point of origin (a cyclic path, or a cycle). The modified
network cannot, however, contain cyclic paths that are based on the dummy links.

� �---·--�--- -·--^-----9 - I-�----·r�l

146

Chap. 6 User Equilibrium with Variable Demand

[a]

trr'

Figure 6.3 The zero-cost overflow net-
work representation: (a) the basic net-
work; (b) the added node and links for
O-D Dair r-s.

every origin and destination of the modified network (e.g., between r and r' for
the O-D pair shown in the figure). This assignment problem can be formu-
lated as an equivalent minimization program (as was done in Chapter 3) and
solved with an appropriate algorithm (e.g., the convex combinations method).
The formulation would be

('Xa (X +C rrr

min z(x) = ta(w) do + E tSr(() de + trr,(co) dwo [6.22a]
a o rs rs

subject to

E f k + Xrr, = q,s V r, s [6.22b]
k

fk 20 V k, r, s [6.22c]

xrr, 0 V r, s [6.22d]

The definition of the performance functions and flow variables related to the
dummy links (see Eqs. [6.21]) imply that tsr,() = - D(), xs,, = qrs, and
t,,() = 0. Thus objective function [6.22a] is identical to [6.10a]. Furthermore,
the network representation guarantees that the flow over the basic network is
q, = k f s and that the excess demand, x,,, = q,s- q., overflows onto the
added link r-. r'. Consequently, the equivalent UE program [6.22] for the
modified network is identical to the equivalent variable-demand UE program
for the basic network as formulated in Eqs. [6.10]. (Constraint [6.22b] in
conjunction with [6.22d] is equivalent to [6.10c], with xrr, representing the
slack flow.)

Program [6.22] can be solved with a standard convex combinations

-------· -I - - v --

147

Part III Extensions of User Equilibrium

algorithm by applying it to the modified network. At the solution point the
travel time over all used paths has to be equal to u, for each O-D pair r-s and
thus, at equilibrium.

trr, = Urs + tsr, V r,

Since t,,, = 0 and tr,, = -D '(q,), this means that at equilibrium

Us = D, 1 (qr) V r, s

Thus, by adding one node and two links (per O-D pair) to the network
description, any fixed-demand traffic assignment algorithm can be used to
solve the problem of equilibrium assignment with variable demand.

Excess-Demand Formulation

The variable-demand problem can be solved with an even more efficient
fixed-demand formulation, again through a network representation. In this
representation, the variable e, denotes the excess demand, that is, trips not
accommodated between origin r and destination s (e,. = q,.- q,). Let W(.)
denote the argument-complementing function of the inverse demand, that is,
Ws(e,) = Dr- l(q,), V r, s. These two function are illustrated in Figure 6.4.

Consider now the objective function of the equivalent variable-demand
formulation [6.1 a]:

min z(x, q) = E ta(Ct) dos - D - '((o) dco
a Jrs o

Travel Time

-Flow
qrs qrs ers

~--er
[a] [b]

Figure 6.4 Inverse demand function and the associated argument-completing func-
tion.

I'l_ _ ___ _ ___ � ___ ___

148

J

-

Chap. 6 User Equilibrium with Variable Demand

Each term in the second sum can be decomposed into two integrals (see Figure
6.4a) as follows:

D (co) d, = J D, '(co) do - J D, `(c) do [6.23a]

The first integral on the right-hand side of Eq. [6.23a] is a constant that can
be dropped from the objective function (it would not affect the result of the
minimization). The second integral can be expressed in terms of the excess
demand with a simple change of variable:t er, = - q,. - q The new variable of
integration is v = r, - o. The limits of the integration become (r, - qr,) and
zero and thus

- {dl(c) dco - D- 1(qrs -- v)(-dv)
tlr -qrs

- J W,s(v) dv [6.23b]

With the integral decomposition [6.23a] and the last expression [6.23b], the
objective function of the equivalent variable-demand formulation can be ex-
pressed as

min z(x, e) = E {ta(o) dw + E Ws(v) dv [6.24a]
a O rs

where e = (..., e,, ...) denotes the vector of excess-demand flows. This mini-
mization is subject to the following constraints:

f's + ers = q4r V r, s [6.24b]
k

fks 2 0 V k, r, s [6.24c]

er > 0 V r, s [6.24d]

Obviously, the incidence relationships hold as well. By inspecting objective
function [6.24a] for this program, it becomes clear that the function W,(er,)
has all the properties of a link performance function. An additional link that
would carry the flow ers can thus be defined. The positioning of this link can
be inferred from the flow conservation constraint (Eq. [6.24b]); this link
should carry the excess-demand flow and therefore should directly connect the
origin to the destination for each O-D pair. The resulting network repre-
sentation is shown in Figure 6.5.

tRecall that a change of variable operation for definite integrals is based on the formula

f;[g(x)] (d) dx = i fi(g) dg

where g() and its derivative are continuous functions defined on the interval [a, b], and f() is a
continuous function in the interval [g(a), g(b)] [which is the range of g()].

__ - . - - -

149

Part III Extensions of User Equilibrium

tr = Wrs(ers) = Dl[(qrs)

Figure 6.5 Excess-demand network rep-
resentation for O-D pair r-s.

Program [6.24], which applies to the excess-demand network repre-
sentation, can be solved with a standard UE minimization method, such as the
convex combinations algorithm. At equilibrium, W,s(e,s) = u,s (see Figure 6.5),
and since W,s(ers) equals D '(q,,) by definition, the equilibrium conditions for
the variable-demand equilibrium are met. This formulation is more efficient
than the zero-cost overflow representation since it requires less computer stor-
age due to the smaller number of additional links used in the representation. It
should, therefore, always be preferred to the zero-cost overflow formulation,
the merit of which is mostly pedagogical.

It is important to realize that each link in the network representation
corresponds to a flow variable. This is true for any network problem. This
observation is the basis for both the zero-cost overflow and the excess-demand
formulations, as well as several other formulations and problem repre-
sentations discussed throughout this text.

Example

The excess-demand formulation can be used to solve the simple network
example introduced in Section 6.1 (see Figure 6.1). In this one-link "network,"
the performance curve was given by t = 1 + x and the demand curve by
x = 5 - t. To solve this problem with the excess-demand flow representation,
a flow bound (of, say, = 5 flow units) has to be introduced. Let the inverse
demand function, D- (.), be t = 5- x and let the excess-demand function,
W(.), be given by t = e, since e = 5 - x.

The problem can now be represented by the two-link network shown in
Figure 6.6. The performance function for the added link is t = e and the
equivalent UE minimization program can be stated for this example as follows

min z(x, e) = (1 + w) do + S do

e

t=e

Figure 6.6 Excess-demand repre-
sentation for a one-link problem with

t 1 + x variable demand.

_ __ __ �_ I

150

Chap. 6 User Equilibrium with Variable Demand

subject to

x+e=5
x, e > 0

For this example the objective function is

min z(x, e) = x + ½X2 + ½e2

The minimum of this function can be found by substituting e = 5 - x, differ-
entiating, and solving in terms of x to obtain x = 2. This x value is identical to
the one obtained in Section 6.1 by using a direct solution method. The associ-
ated value of the excess demand in this example is e = 3. If the demand bound
had been chosen to be, for example, = 20 or = 4, the resulting solution
would have been e = 18 or e = 2, respectively, with x = 2 in both cases. Thus
the demand bound does not change the problem or its solution when it is set
high enough.

Computational Considerations

Using the convex combinations algorithm, the computational effort re-
quired to solve variable-demand UE programs is significantly higher than that
required for solving fixed-demand UE programs over the same networks. This
phenomenon, however, is not obvious since there are many aspects of these
two problems from which one could have concluded that the difference in
computational efforts is modest.

To begin with, the number of minimum path trees computed for both
problems is identical. The difference in the computational effort may, there-
fore, be rooted either in the added calculation associated with the flow assign-
ment between each O-D pair, in the calculation of the optimal move size, or in
the number of iterations of the algorithms.

The first factor is the added computational effort associated with each
O-D pair. The added effort associated with variable-demand problems in-
volves one comparison (see Eq. [6.16]) for each O-D pair. Even though the
number of O-D pairs may be large, the total added effort is small. This
computational effort argument can be viewed in the context of the excess-
demand network representation. Here the variable-demand problem is solved
as a fixed-demand problem over a larger network. The effect of the added
(excess-demand) links on the calculation of the minimum path trees is smaller
than that of regular network links. The reason is the special position of the
excess-demand links, which implies that each such link is used in the calcula-
tion of only one minimum path tree. Consequently, their impact is not as large
as implied by the (possibly) large number of these links.

The second factor is the execution of the one-dimensional minimization
in the process of calculating the move size. This minimization may be slow
relative to the one-dimensional search in the fixed-demand case due to the
added terms in the objective function. In absolute terms, however, the one-

151

Part III Extensions of User Equilibrium

dimensional search constitutes only a small fraction of the computational
effort associated with solving network-equilibrium problems. Thus the overall
effect of a slower one-dimensional search is small.

The main reason that the convex-combination algorithm requires a large
computational effort to solve variable-demand problems is the number of
iterations required. This algorithm takes a significantly larger number of iter-
ations to converge for the variable-demand problem than for a compatible
fixed-demand problem. The reason for this can be intuitively understood by
considering, again, the excess-demand formulation. The position of the excess-
demand links means that flow can be assigned to each of these links only when
the O-D pair to which it belongs is considered. Thus each excess-demand link
is being considered for flow assignment only once at each iteration (unlike
most other links in the network which carry flow between many origins and
many destinations). Consequently, many iterations may be required before the
flow on the excess links can stabilize and equilibrium be obtained.

Interestingly, the number of iterations required for convergence of the
variable-demand UE problem can be influenced by the analyst through the
choice of the upper bounds on the O-D flows, {4qr}. As the algorithm proceeds
these bounds are assigned either to the network or to the excess-demand links.
Relaxed bounds (i.e., large values for {4,,}) mean that the excess flow is high
and the excess-demand links are always "congested". As shown in Chapter 5,
the convex combinations algorithm is slow to converge for congested net-
works. It is therefore a good practice to set {,,} as low as possible. A good
bound can be obtained from the minimum travel-time path connecting each
O-D pair at free-flow conditions. In other words, for each O-D pair r-s, q, is
set equal to D,.(uR), where u is the travel time on the minimum path connec-
ting r to s when t = ta(O), V a. Obviously, the final O-D flow will never be
larger (due to network congestion) and thus this bound will not be binding at
the solution point. Such a bound, however, still may not be very tight and
better convergence characteristics can be achieved by varying the bounds at
each iteration. In other words, the bounds at each iteration, {4 }, can be set
lower than D,s(u°). These bounds are then examined at each iteration. If
q1s = qrns 4 is increased at the next iteration whereas if q,, << c4n, qr is de-
creased at the next iteration. Note that Chapter 7 describes an algorithm that
can be adapted to solve variable-demand UE problems even though it was
originally developed for joint distribution/assignment problems (which are ex-
plored in that chapter). As it turns out, it is more efficient to use that algorithm
than the convex combinations method for solving variable demand problems.

To conclude this discussion note that one concern that is significantly
more fundamental than the computational issues, is the availability of appro-
priate data. In assessing the viability of using a variable-demand model, a key
factor is the availability of the demand functions, or of the data needed to
estimate such functions. The computational issues considered in this section
are dwarfed in comparison to the cost of obtaining these data. Further data
and input considerations are discussed in Chapter 13.

·�I

152

Chap. 6 User Equilibrium with Variable Demand

The next section uses the methodology developed in this chapter to
formulate and solve a problem that includes an alternative mode of travel in
addition to the automobile.

6.4 MODE CHOICE WITH INDEPENDENT MODES

In most cases, the design period for which urban networks are analyzed is the
morning or afternoon peak-demand period. During these times, most of the
trips cannot be easily forgone or shifted because of the purpose for which they
are conducted (e.g., a large portion of these trips are work related). The
number of trips taken between each origin and destination can thus be regard-
ed as fixed. Some of these trips, however, may not be conducted over the road
network but on alternative modes of transportation, such as transit. This
section analyzes a network equilibrium problem in which the network includes
both automobile and transit modes. The solution includes the flow of transit
patrons between each O-D pair in addition to the vehicular flow pattern over
the network. This problem is referred to as the combined modal split/traffic
assignment problem.

To analyze the combined problem, assume that some of the network
O-D pairs are connected by transit. At this point in the text, the level of
service offered by the transit system is assumed to be independent of either the
automobile flow or the transit patronage. The following analysis is thus appli-
cable only in situations where the transit vehicles are moving on dedicated
guideways (e.g., subway tunnels, elevated guideways, reserved bus lanes, etc.)
and where the transit capacity is large enough so that congestion effects on the
transit routes can be assumed not to occur. (A more general analysis of this
topic is presented in Chapter 9.) For the purposes of this discussion, the transit
level of service between origin r and destination s is summarized by a constant,
i,,, expressed in travel time units. The transit flow between r and s is denoted
by 4,. The transit service can thus be represented by a single link r - s
connecting each O-D pair served by transit.

The combined automobile and transit network is illustrated in Figure
6.7, which depicts a single O-D pair. The network structure shown in this
figure is similar to the excess-demand network representation discussed in the

qrs

Figure 6.7 Excess-demand repre-
sentation for a simple joint modal
split/traffic assignment problem.

_.__ ���_ _·_

153

Part III Extensions of User Equilibrium

preceding section. The difference between the two representations is that in the
mode-choice problem, the total O-D demand, qrs, is not an arbitrary upper
bound but one that corresponds to the actual total trip rate (by both modes)
for each O-D pair. Note that, for consistency, both automobile and transit
flows should now be expressed in terms of persons per unit of time. Since the
basic network is analyzed in terms of automobile flows, a vehicle occupancy
factor must be used to convert person flow to vehicular flow over this network.
For simplicity, it is assumed here that the automobile occupancy factor is 1.
(The flow over the transit network is measured in persons per time unit since
the flow of the transit vehicles is assumed exogenous to the problem.)

Equilibrium between Modes

At equilibrium, the transit and automobile flows and travel times be-
tween each O-D pair should satisfy some equilibrium definition. One possi-
bility is to define a UE condition between the two flows in addition to the
equilibrium over the basic network. In other words, for each O-D pair, the
travel times on both the transit and the road network should be equal if both
are used. If only one mode is used, the travel time on it should be lower than
the travel time on the unused mode. If this definition is adopted, the added
transit link should be treated in the same fashion as any other link in the
network. Assuming that all O-D pairs are connected by transit, the appropri-
ate equivalent minimization program would then be

min z(x,) = ta(o) do) + E Ors ur [6.25a]
a o rs

subject to

Efk + 4rs = lrs V r, S [6.25b]
k

fks, rs > 0 V k, r, s [6.25c]

where 4 = (r..- 4,), and ,rs is the transit travel time between origin r and
destination s.t The solution to this program can be found with a standard UE
algorithm.

The fault of the analysis leading to program [6.25] lies in its failure to
account for observed conditions. Transit lines are always used, even though
the transit travel times tend to be longer than automobile travel times for the
same O-D pairs. Even in cases in which the transit and auto travel times
represent general travel impedance, the UE conditions are not a reasonable
model of modal split since they imply that the same determinant of mode

tThe variable u1rs can be assumed to include factors other than travel time, and to stand for
a "generalized transit impedance" expressed in time units. As mentioned in Chapter 1, the travel
times over the automobile network can be interpreted in this fashion as well.

· I I

154

Chap. 6 User Equilibrium with Variable Demand

choice (the travel impedance) can be defined for all individual travelers. In
such a model travelers would consistently choose the mode with the lower
impedance, in the same way that it is assumed that they choose the route with
the lowest travel time. Mode choice studies, however, indicate clearly that this
is not the case.

The issue of modal split between transit and automobile has been thor-
oughly researched and modeled by transportation engineers and planners, who
have long recognized that mode choice results from a complex decision proc-
ess. This process is influenced by a large number of factors, many of which are
difficult to quantify and measure. To account for these factors in practice,
special "mode split" functions have been developed. These functions take into
account the transit and automobile travel times but allow for situations in
which these times are not equal at equilibrium. Given a set of travel times,
these functions approximate the appropriate flow of transit and automobile
travelers for each O-D pair. One of the most widely used mode split functions
is the logit formula:

1
q, = qrs 1 + e(" - fin) [6.26]

where 0 is a positive parameter (estimated from data), u, is the (minimum)
travel time by auto between O-D pair r-s, and zu, is the transit travel time for
this O-D pair. Note that this functional form also ensures that both q,, and ,'.
are positive and less than 4,. At equilibrium, then, the automobile and transit
trip rates should satisfy Eq. [6.26]. In addition, the UE conditions have to be
satisfied over the basic (automobile) network.

Formulation and Solution Algorithm

The logit model is discussed in detail in Chapter 10. At this point it
should be regarded simply as a formula for the demand for vehicular trips
between origin r and destination s. Because the transit travel time, u,8 , is fixed,
Eq. [6.26] gives q,, as a function of u,. Furthermore, this function is decreas-
ing in u,, and bounded from above (by 4,j. Consequently, the logit model (in
Eq. [6.26]) satisfies the requirements of a demand function, as introduced in
Section 6.1. The equilibrium over the road network can now be viewed as a
variable demand UE problem with the demand functions, q,, = Dr(ur), given
by Eq. [6.26] for each O-D pair. Furthermore, the problem can be solved with
the variable-demand methods introduced in the preceding section. As men-
tioned at the beginning of this section, the transit link that connects each O-D
pair parallels the excess-demand link introduced in Section 6.3. In order to
apply that solution methodology, however, the demand model has to be in-
verted and expressed in terms of the excess-demand variable (this variable,
denoted by e, in the preceding section, represents in this case the transit
ridership, denoted here by q.

I ___�_�__ _____��_

155

Part III Extensions of User Equilibrium

The inverse demand function, D (*), is given by

U,5(q,.)= In (- 1 + ,, V r, s [6.27a]

The excess demand function [denoted W() in the preceding section] can be
derived by changing the argument in the last function to 4r, = q4, - q,, that is,

Ws() = n q + U V r, s [6.27b]

The argument of this function, ,, is the excess vehicular demand, which in
this case represents the flow of transit trips between r and s. The formulation
of the equivalent program can now be expressed as

min z(x, q) = E d() dco+ (n + ,) dco [6.28a]ta~co) dco In CJ s co

subject to

fs + , = q,, V r, s [6.28b]
k

fk 2 0 V k, r, s [6.28c]

0 < ,, < qr, v r, s [6.28d]

The reader should, at this point, be able to verify that the Kuhn-Tucker
conditions of program [6.28] guarantee that its solution is a two-mode equi-
librium flow pattern (see Problem 6.10). Note that due to the logarithm in the
objective function, the transit O-D flows can attain neither their upper nor
their lower limit (i.e., 0 < ,r < q, as stated in constraint [6.28d]). In fact, the
aforementioned functional form of the objective function implies that this
constraint will never be binding and therefore it does not have to be included
in the first-order conditions of this program.

The application of the standard (fixed-demand) convex combinations
method to this problem is straightforward. The transit alternative is repre-
sented by a link directly connecting each O-D pair served by transit. The
performance curve for this link, W,,(4,), is given by Eq. [6.27b], which is
plotted in Figure 6.8 for certain values of its parameters (i.e., 0 = 1.0, 4, = 1.0,
and ti,- = 1.0). It is important to note that this function is increasing. A de-
tailed investigation of the properties of this function is left to the reader (see
Problem 6.14).

This representation clarifies the reason constraint [6.28d] is not binding
at the optimal solution. If 4, - 0, the equivalent performance function over
the transit link, Wrs(4,.), will tend to - oo. More flow will then tend to use the
transit link, so 4,. will increase. If ,. q-, W,.(,) will tend to o and the flow
over the transit link will decrease. Consequently, neither of these two bound-
ary values can be in the equilibrium solution of the problem.

156

Chap. 6 User Equilibrium with Variable Demand

Wrs [qrs

Figure 6.8 The equivalent link per-
formance function used for the additional
transit link to represent the logit modal
split function. It parallels the argument-
completing function associated with the
inverse demand function (see Figure 6.4
and the related discussion).

qrS = 1.0

e = 1.0

U, - 1.0

*qrs

The point where caution should be exercised is in initializing the algo-
rithm. It is customary to start the procedure with an empty (zero-flow) net-
work. The equivalent performance function over the dummy link, however, is
undefined for , = 0 (or q, = qrs), and thus other values should be used. A
good starting point can be obtained by the values of 4, and q,. resulting from
an application of the logit modal split function to the travel time over an
empty basic network. Once an initial feasible solution is found, the algorithm
will not generate another solution with either 4r, = 0 or 4, = qt.

At the point of convergence of the algorithm, equilibrium is obtained and
the travel time through the basic network should equal the "equivalent travel
time" W,,(r) on the parallel (transit) route for each O-D pair. In other words,
the following condition must hold :t

1 _ r_
-In q + +ti, = u, V r, s [6.29a]
0 4 - r

This equation, however, can be rewritten as

__rs 1

- 1 + ea-) V , [6.29b]
which is the logit formula for the transit volume (compare this expression to
Eq. [6.26]). Thus, at equilibrium, the modal split is given by the logit model
and the UE conditions are satisfied over the basic network.

Example

Consider an elementary network consisting of one link connecting an
origin to a destination. In addition, the origin is connected to the destination
by a transit route (link) as shown in Figure 6.9. Let t and x denote the travel

tAgain, the asterisks denoting equilibrium values have been omitted from the variables
(4,,, and u,,) in this equation for clarity of notittion.

______ ___ __ ____

157

Part III Extensions of User Equilibrium

TRANSIT LINK

0AUTO LINK D Figure 6.9 Simple network including
one O-D pair connected by one automo-

x , bile route and one transit line.

time and the flow, respectively, over the transit link. Similarly, let t and x
denote the travel time and flow, respectively, over the automobile link, where
t = t(x). Denoting the total O-D volume by , the flows of automobile users
and transit passengers are given by the logit formula with parameter 0, that is,

1
X = q 1 + e(i - t)

x=q-x
Assume for this example that the road performance function is given by t =
10 + 0.2x2 , the transit travel time is t = 20 time units, the total O-D flow is
4 = 10 person units/time unit, and the logit parameter is 0 = 0.1 time unit - .

The equilibrium equations in this case would be:

10
Mode split: 10[6.30a

1 + exp [0.1(20 - t)] [6.30a]

Road performance: t = 10 + 0.2x2 [6.30b]

Flow conservation: x = 10 - x [6.30c]

The flow conservation condition can be substituted in the road performance
equation and the resulting expression for t (in terms of) can then be substi-
tuted into the mode split equation. This process yields the following equation
for x:

10
x = 10 [6.31]X 1 + exp [0.1(-0.22 + 4x - 10)]

The solution of this equation can be found numerically (using a programmable
calculator) to be = 4.2 flow units.t This transit flow implies an automobile
flow of x = 5.8 flow units.

To solve this example as an equivalent fixed-demand problem, the prob-
lem should be set as a two-link network with the performance function on the
one link being

t(x) = 10 + 0.2x2 [6.32a]

and the performance function on the other link being (see Eq. [6.27b])

1 X
W(x) = In 1 + 20 [6.32b]

More accurae10 -= 4.193113 flow units.

tMore accurately, the solution is = 4.193113 flow units.

__

158

Chap. 6 User Equilibrium with Variable Demand

Let ' = W(Z) be the "equivalent travel time" on the transit link. Using this
approach, the modified network [which includes the "equivalent performance
function" W(x)] is solved for user equilibrium (i.e. at equilibruium t = P even
though t • t). Assuming that both links will be used at equilibrium, the solu-
tion can be found by setting t = t', or t(x) = W(x), that is,

10 + 0.2x2 = In + 20
6 10 -x.2

To solve this problem, the flow conservation constraint, x = 10 - x, can be
substituted for the transit flow on the right-hand side of this equation to
obtain the equation

1 10 - x
10 + 0.2x2 = -In + 20

6 x

Using 0 = 0.1, the last equation can be written as

10 -x
0.2x2 - 20 - 10 In = 0 [6.33]

Equation [6.33] can be solved numerically to obtain x = 5.8, implying x = 4.2,
a solution that is identical to the flows obtained directly from the equilibrium
conditions. Thus the equivalent minimization gives the same results as the
direct solution, as expected.

At equilibrium, the travel time on the road link is t(5.8)= 16.7, and the
equivalent travel time on the transit link is P = W(4.2)= 16.7 time units as
well. The actual travel time on the transit link, however, is t = 20 time units.
At equilibrium, then, the travel times on both modes are not equal even
though both are used. Instead, the flow is given by a special mode split
function, the argument of which is the equilibrium travel time.

This example can also be solved by applying the convex combinations
method to the two-link representation, which includes performance functions
[6.32]. For this small problem the algorithm would converge in one iteration.
(Why?) Starting with xO = 5 and xO = 5, the auxiliary solution would be
yO = 10 and y = 0. The move size would be No = 0.16t (show it), resulting in
the equilibrium solution x = 5.8 and x = 4.2 flow units.

6.5 SUMMARY

This chapter introduced the problem of user equilibrium with variable
demand. The origin-destination trip rates which are an input to the original
UE problem are replaced here by O-D demand functions. These functions
give the trip rate between each O-D pair as a function of the travel time
between the origin and the destination. The demand functions are assumed to
be decreasing and bounded from above.

tMore precisely, o = 0.161377.

.___ __�__II __ __· ___

159

Part III Extensions of User Equilibrium

Problems of equilibrium with variable demand can be formulated as
equivalent minimization programs in a fashion analogous to the formulation
of fixed-demand problems. The important difference between the formulations
of the two problems is that the O-D trip rates are treated as variables (as
opposed to exogeneous constants) in the variable-demand formulation. The
first-order conditions for the equivalent program are identical to the equilibri-
um equations, and the program has a unique solution in terms of the link
flows and the O-D trip rates.

The convex combinations algorithm can readily be adapted to the solu-
tion of the variable-demand equivalent program. The adaptation requires one
additional check in the direction finding stage and, of course, the use of the
variable-demand objective function in the move-size-determination stage.
These modifications to the algorithm, however, are unnecessary because the
network representation of the problem can be augmented to generate an
equivalent fixed-demand UE problem to which any UE algorithm can be
applied. Section 6.3 described two different network representations that can
be used to develop such an equivalent UE program. These are the zero-cost
overflow formulation and the excess-demand formulation. In each case the
modified network includes some additional "dummy" link with "equivalent
performance functions." The excess-demand representation is the more ef-
ficient of the two since it requires less computer memory.

The approach used in the formulation and solution of the excess-demand
network representation can also be used to solve problems combining modal
split and traffic assignment. Section 6.4 demonstrates how the excess-demand
link can represent the transit flow between each O-D pair and how the
"equivalent performance function" for this link is obtained. The formulation
of the joint equilibrium/mode choice problem is based on the logit mode split
formula, due to its widespread use in practice for this purpose. Note that even
though the UE conditions hold throughout the modified network at the solu-
tion point, the relative volumes of transit and auto are given by the logit
formula. This, of course, is due to the particular formulation of the "equivalent
performance function" over the transit link connecting each O-D pair.

The problem of determining, jointly, the equilibrium flows and the modal
splits, as formulated and solved in Section 6.4, is quite restrictive. It applies
only to noninteracting modes and in cases in which the transit travel time is
not flow dependent. Chapter 9 offers a more general treatment of the joint
traffic assignment/mode split problem.

6.6 ANNOTATED REFERENCES

The formulation of the problem of user equilibrium with elastic demand, as an
equivalent minimization program, appears in the work of Beckmann et al.
(1956). The original formulation in that book includes both the variable-
demand case and the fixed-demand case. The fixed-demand case, however, was
not treated separately as is done in this text.

One of the first approaches to the solution of this problem was offered by

·_ ·

160

Chap. 6 User Equilibrium with Variable Demand

Beckmann et al. in the aforementioned reference. Their heuristic is a hybrid
between capacity restraint and incremental assignment method; it determines
the minimum paths based on the travel times of the last iteration but assigns
only a predetermined portion of the flow to this minimum path, combining the
old and new flow solutions in fixed proportions. This technique is similar to
the modified capacity restraint method discussed in Chapter 5. The method of
incremental assignment was investigated by Martin and Manheim (1965) and
implemented in the DODOTRANS urban planning package (which included
variable demand) developed by Manheim and Ruiter (1970). Another heuristic
was suggested by Bruynooghe et al. (1968) based on computation and adjust-
ment of shortest and longest O-D routes. Wigan (1971) used a capacity re-
straint method for the determination of O-D flows, while the network itself
was solved using the convex combinations method. Rigorous minimization-
based methods were suggested by many researchers, including Wilkie and
Stefanek (1971), who proposed a Newton-Raphson procedure similar to the
one mentioned in Chapter 4 of this book. This procedure does not, however,
exploit the special network structure of the problem, and consequently is
impractical. A more efficient algorithm was suggested by Florian (1977) based
on Benders's decomposition method. Unfortunately, the traffic assignment
part of their procedure is based on the reduced gradient method, which re-
quires path enumeration; this requirement makes it infeasible for large net-
works.

The presentation in this chapter follows the exposition of the use of
dummy network representation and fixed-demand algorithms given by Gart-
ner (1980). This exposition is based on the works of Murchland (1970), who
first suggested the use of dummy links associated with inverse-demand func-
tions, and Dantzig et al. (1976), who showed how fixed-demand algorithms can
be applied to such representations. The comments regarding numerical con-
sideration with respect to the variable demand problem are based on the
works of LeBlanc and Farhangian (1981), and Mimis (1984).

The idea of representing many travel decisions as choices between paths
in an abstract network was suggested by Dafermos (1976), who assumed user-
equilibrium conditions to prevail throughout the abstract network. One of the
first treatments of the joint modal split and traffic assignment problems in the
context of mathematical programming-based equilibrium methods is offered
by Florian (1977). The literature on mode choice models is too vast to enumer-
ate here. Many of the approaches to that issue are covered in the books by
Stopher and Meyburg (1975), and Kanafani (1983). The logit model used in
this section is described in greater detail in Chapter 10, which includes more
references.

6.7 PROBLEMS

6.1. Show that the Hessian of the objective function of the equivalent variable-
demand program [6.1] is positive definite. Why is the problem unique in the O-D
trip rates but not in path flows?

__ - -

-

161

Part III Extensions of User Equilibrium

6.2. Develop a detailed flowchart of the application of the convex combinations algo-
rithm to the minimization of the equivalent program for user equilibrium with
variable demand (Program [6.10]). Include in your flowchart a detailed descrip-
tion of the initialization procedure and the convergence test.

6.3. Solve graphically for the equilibrium flows in a network, including two links
connecting one O-D pair. The data for this problem are as follows:

Link 1 performance: t = 1 + 2

Link 2 performance: t2 = 3 + x2

Demand q=-- 1
u

Flow conservation: q = xl + x 2

where t and t 2 are the travel times on link 1 and link 2, respectively, x1 and x2
are the flows on these links, u is the O-D travel time, and q is the O-D flow.

6.4. Formulate Problem 6.3 as an equivalent minimization. State the first-order con-
ditions and solve them for the equilibrium flows.

6.5. Formulate Problem 6.3 as a fixed-demand problem and solve it graphically as
such.

6.6. Consider the zero-cost overflow formulation.
(a) Show that the mathematical programming formulation in Eqs. [6.22] reduces

to the original formulation of the variable-demand program in Eqs. [6.10].
(b) At equilibrium, what is the travel time on link r-- r'? What is the implication

of this on the equilibrium conditions?
(c) Can you think about situations in which the path r-- r' is not used at equilib-

rium? Explain.
(d) What is the basis for the name "generating link" for link s-o r'?

6.7. Solve the simple one-link example of Section 6.1 using t(x) = 1 + x 2 and
D(t) = 10 - 2t. Use the excess-demand formulation.

6.8. Solve for the equilibrium flow over a one-link network with

t= 1+x
X= 153 for t 2
5-t for t 2

using the excess-demand formulation.

6.9. Suggest two ways to modify programs [6.25] and [6.28] to account for O-D
pairs that are not served by transit.

6.10. Show that the first-order conditions of the equivalent variable-demand formu-
lation (program [6.28]) give the proper equilibrium/mode split conditions.

6.11. Solve the integral in Eq. [6.28a] and formulate the equivalent minimization for
the two-modes problem explicitly in terms of x, q, and . Formulate the La-
grangian of this program and investigate its first-order conditions. (Recall that

No In co dco = x In x - x.)

6.12. Formulate the problem of equilibrium and mode split when the transit travel time
is flow dependent. Is there any difficulty in formulating the network repre-
sentation of the problem?

I _

162

Chap. 6 User Equilibrium with Variable Demand

6.13. Formulate the problem of equilibrium with mode split when the logit model is
given by qrs = qr,/[l + eel +2(.,-,,)]. (As in Section 6.4, assume independence of
the transit mode and no congestion on that mode.) Also, suggest an interpretation
of the parameters of this logit function and compare it to the one used in Sec-
tion 6.4.

6.14. Investigate the inverse demand function, W(, 1J), used in the excess-demand for-
mulation of the mode split problem (Eq. [6.27b]).
(a) Show graphically the effect of 0, q, and i,,. Where is the inflection point,

and where is the root of the function?
(b) Over some of its range, W(.) < 0. This is not typical of other performance

curves in the network. Is this a problem? Why?
(c) Describe qualitatively how the sequence of assignments will progress as the

convex combinations algorithm is applied to the solution of the combined
mode split/traffic assignment problem.

6.15. Describe how the convex combinations algorithm should be modified to solve the
joint mode split/traffic assignment problem if the network representation formu-
lation is not used.

6.16. Formulate the example in Section 6.4 as a minimization problem using the
excess-demand formulation. Solve it and check that your solution coincides with
the answer given in that section.

6.17. Solve the one link-two modes example in Section 6.4 for other values of the logit
parameter (use 0 = 0, 0.3, 0.5, 1.0, 2.0). Compare the solution in each case with
the UE-type solution (which assumes that if both modes are used at equilibrium,
the transit and automobile travel times will be the same). What is the effect of 0?
How would you use field data for model selection in joint modal split/traffic
assignment studies?

__�_�___ ____ ___. _· · _I�

163

Trip Distribution
and Traffic Assignment

Models

The standard UE network assignment problem can be viewed as a model of
motorists' choice of path from origin to destination. Chapter 6 considered an
additional choice dimension. This dimension can be looked upon as either the
choice of not to travel or the choice of an alternative travel mode. The former
results in the variable-demand equilibrium assignment problem, while the
latter gives rise to a joint mode split/equilibrium assignment problem. In each
of these problems, the O-D trips rates are determined independently for each
O-D pair.

This chapter introduces a new dimension of choice and a somewhat
different problem. Here (unlike in Section 6.4) the focus is on vehicular trips
only, but the total number of trips originating from each node is assumed
fixed. The question then becomes one of how these trips are distributed among
the various destination nodes, an issue that is affected by motorists' choice of
destination. The determination of motorists' choice of destination and the path
used to get there is known as the joint distribution/assignment problem. In
this case, the O-D flows, {q,,}, are variables, the value of which have to be
determined subject to the constraint

E qrs = or V r [7.1]

where Or is the (fixed and known) total number of trips originating at node r.
In this problem, it is assumed that each destination, s, is associated with

some attraction measure, M,, reflecting the activity opportunities available
there. Accordingly, it can include variables such as retail activity, employment
density, and so on. Several destination choice criteria can be defined in con-

164

.·

Chap. 7 Trip Distribution and Traffic Assignment Models

junction with this measure. For example, motorists might be assumed to
choose the destination with the highest M, value. This would mean, however,
that travel time is not a consideration in their choice of destination, implying
that the problem can be separated from the equilibrium assignment issue. Such
a criterion would be a degenerate case of the more general problem discussed
in this text.t A more plausible assumption would be that motorists try to
accomplish two goals: travel to the destination with the highest attraction
measure while spending the least possible time in travel. Under this assump-
tion the choice of destination is the result of a trade-off between attraction and
travel time. Such a model can be formulated in terms of an overall UE-type set
of equilibrium conditions. This model, which is presented in Section 7.1, suffers
from several shortcomings; it is used in this chapter only to illustrate some
concepts that are important for other models. The practice in the transpor-
tation planning profession is to use special functions (known as trip distri-
bution or destination choice models) to distribute the trips. Section 7.2 pre-
sents the formulation and solution of the resulting distribution/assignment
problem.

Section 7.3 addresses yet another trip distribution criterion. In this case,
not only is the total number of trips originating at each node fixed, but the
number of trips destined for any node is fixed as well. Thus, in addition to Eq.
[7.1], the O-D flow rates have to satisfy the constraint

E q,s = D, V s [7.2]

where D, is the (fixed and known) number of trips destined for node s.
Each of the models discussed in this chapter is associated with an equiv-

alent minimization program and algorithmic solution procedures. The last
model discussed, however, requires the solution of a special subproblem
known as Hitchcock's transportation problem. An algorithmic solution to this
problem is outlined in Section 7.4.

7.1 THE UE DISTRIBUTION/ASSIGNMENT PROBLEM

The problem analyzed in this section assumes that each destination, s, is
associated with an attraction measure, M,. The total flow originating at each
node, r, is fixed to be O,. Travelers are assumed to choose destinations that are
attractive (high Ms value), on the one hand, and close by (low u, value), on the
other. (As before, u,, is the travel time on the minimum path from r to s.) In
this model destinations are chosen so that the difference, (M, - u,,), is maxi-
mized. Alternatively, the destination choice criterion can be stated as a mini-
mization of the net travel impedance, (u, - M). In other words, all motorists
at r will choose the destination with the lowest net travel impedance. At

tit means, for example, that a person is equally likely to buy groceries at a local store as he
or she is to drive across town to purchase the same items at a similar store.

__ _

165

Part III Extensions of User Equilibrium

equilibrium, the net travel impedance to all destinations visited from r (that is,
destinations r-s for which q,, > O) will be equal to or lower than the net travel
impedance to all destinations not visited from r. Notwithstanding this con-
dition, the regular UE conditions should hold among all paths connecting
each O-D pair. This formulation is known as the UE (or Wardropian) distri-
bution/assignment model. It is important to note that the attraction measures,
{M,}, have to be specified in travel time units in order to be compatible with
the network travel times.t

Problem Formulation

Based on the formulation of the (fixed-demand) equivalent user-
equilibrium program [3.1], the combined distribution/assignment problem can
be formulated as follows:

min z(x, q)= E tta() do - E M. q,, [7.3a]
a rs

subject to

Efrs = q V r, s (ur) [7.3b]
k

Z qrs = Or V r (#r) [7.3c]

fk 0 V k, r, s [7.3d]

q,s > 0 V r, s [7.3e]

In this program, 0, is a constant for each origin in the network and the dual
variables (Lagrange multipliers) are given in parentheses next to the corre-
sponding constraints. The incidence relationships have been omitted from the
formulation to simplify the presentation, but it is always understood that when
the formulation includes both path- and link-flow variables, these relationships
hold.

For program [7.3] to be an equivalent distribution/assignment mini-
mization, its first-order conditions must be identical to the equilibrium equa-
tions. As in previous cases, these conditions can be derived by forming and
analyzing the Lagrangian, which, for this program, is given by

L(x, q, u, P) = I ta() do - M qr
a JO

+ rsqu, - s fr) + E -r(O E qr) [7.4a]

tThe conversion of attraction and other factors affecting travel demand into travel-time
units is discussed in Chapter 13. The conversion factor is determined typically in the process of
estimating the attraction measures, or in general, the travel demand models discussed in that
chapter.

· 1

166

Chap. 7 Trip Distribution and Traffic Assignment Models

The minimum of this Lagrangian with respect to the flow variables has to be
subject to the following constraints:

f[2 0 V k, r, s [7.4b]

q, 2> 0 V r, s [7.4c]

Its maximum, with respect to u and t, is unconstrained. The first-order con-
ditions for a saddle point of this Lagrangian program are given by

20 ()f Vk, r, s

aL() a) V

-L(L0 Vr,s
L()-O Vrs

aUr,

and the nonnegativity constraints [7.4b] and [7.4c]. The derivatives of the
Lagrangian with respect to the flow variables are as follows:

0L() Fsa.)a- = c - us and) =-Ms + u,, - #r

The derivatives with respect to the dual variables are the associated con-
straints themselves. The first-order conditions of program [7.3] are then

(Ck - U)fk = 0 V k, r, s [7.5a]

c' - ur 2 >0 V k, r, s [7.5b]

[(Ur - M,) - r]q,, = 0 V r, s [7.5c]

(Ur - Ms)- Pr > 0 V r, s [7.5d]

fr = q,, V r, s [7.5e]
k

qr, = O, V r [7.5f]

f' 2 0 V k, r, s [7.5g]

The first two conditions spell out the familiar user-equilibrium condition over
the network. Equation [7.5b] means that, at the saddle point of the La-
grangian, u,, can be interpreted as the travel time over the shortest path
connecting O-D pair r-s, whereas Eq. [7.5a] guarantees that if the flow on
any given path, k, is positive, the travel time on this path will equal the travel
time on the shortest path. Consequently, the travel time on all paths with

167

Part III Extensions of User Equilibrium

positive flow between each O-D pair will be equal. Furthermore, this travel
time will be no greater than the travel time on any unused paths.

Equations [7.5c] and [7.5d] exhibit the same structure and can be inter-
preted in a similar fashion. Equation [7.5d] means that #, is the smallest net
travel impedance, (u,, - M,), of all destinations that can be visited from origin
r. Equation [7.5c] guarantees that if destination s is actually visited from r (i.e.,
q, > 0), the net travel impedance to this destination will equal r,. Conse-
quently, the net travel impedance to all destinations visited from each origin
will be equal. Furthermore, this net travel impedance is less than or equal to
the net travel impedance to any destination not visited from that origin.

It can be concluded, then, that program [7.3] is an equivalent mini-
mization program to the UE distribution/assignment problem. This type of
equilibrium includes the usual UE conditions in terms of the paths' travel
times for each O-D pair, and similar UE conditions in terms of the net travel
impedance to all destinations, for each origin. The reader can verify that
program [7.3] is strictly convex and has, therefore, a unique minimum.

Algorithm

The solution for program [7.3] can be obtained by using the convex
combinations method. The linear program which has to be solved in the
direction finding step of this algorithm can be formulated by first writing
program [7.3] in terms of path-flow variables as done in Section 6.2 for the
variable-demand problem. The linear program (at the nth iteration of the
algorithm) then becomes

az[x(f"), q(f")] min z(g)= g g, = C (r - M,)gr [7.6a]
rs k kfk rs k

subject to

E (I s) = or V r [7.6b]

gs 2 0 V k, r, s [7.6c]

where c" is the travel time on path k between r and s at the nth iteration (i.e.,
c = ,a t" aas k). Since the flow conservation constraint [7.6b] holds for each
origin, the problem can be decomposed by origin nodes. For each r, then, the
objective function is minimized by assigning all the available flow (0.) to the
route, 1, leading from r to destination m for which the net travel impedance is
the smallest (i.e., 1, m such that C"" - M = mink, {c" - M,}). All other
routes are assigned zero flow. The direction-finding step at the nth iteration
can, then, be summarized as follows. For each origin, r:

1. Compute the minimum path to all destinations based on the current set
of link times, {ta}. Denote the travel times on these paths by urn, V s.

�I _

168

Chap. 7 Trip Distribution and Traffic Assignment Models

2. Assign flow 0, to the minimum path of the "most attractive destination"
in terms of net travel impedance (i.e., to m such that u - M =
min, {u - M,)).

This yields (after the flow from all origins has been assigned) an auxiliary flow
pattern, {gk"}, which can be expressed in terms of auxiliary link and O-D
flows, ({y:}, {v',}) by using the relationships y = Sk g" b6,k and v,, = Sk gr.

The move size is determined by finding a scalar, a,, that solves the
program

+ OCv - x3
min z(~a) a= E to(co) dco - E M,[q + (v," - q",)] [7-7]

04 a < I a rs

Once a, is found, the new solution can be obtained by the updating step given
in Eqs. [6.19].

Solution by Network Representation

The adaptation of the convex combinations algorithm to the solution of
the distribution/assignment program is straightforward. As was the case with
the variable-demand problem, however, such an adaptation may not be neces-
sary. A simple modification of the network representation can transform the
distribution/assignment problem into an equivalent UE problem, which can be
solved with any standard UE equilibration algorithm.

The required modification is shown in Figure 7.1; the network is aug-
mented by dummy links leading from each destination node to a dummy
destination node, denoted r'. There is one dummy destination node associated
with each origin node. Consequently, the total number of dummy links is the
product of the number of origins and the number of destination. Figure 7.2
illustrates the augmented network for a case of two origins and three destina-
tions. The flow on each of the dummy links, s--+ r', is q,,, and the equivalent
travel time on each of these dummy links is -M,. Note that the actual
network links are not shown in Figures 7.1 and 7.2; they are all part of the
basic network, which is depicted only abstractly.

Consider now a UE problem defined over the modified network. The
origin nodes of this network are identical to the origin nodes of the original

Figure 7.1 Network representation for
solving a joint distribution/assignment
problem; dummy links are added from
each destination node to a new "origin-
dummy" node.

_·___�����_

169

Part III Extensions of User Equilibrium

Figure 7.2 Network representation for
the joint distribution/assignment prob-
lem, showing two origins.

(basic) network. The destination nodes, however, are the dummy destinations,
{r'). Assume now that the fixed O-D trip rates between each origin, r, and its
associated dummy destination, r', is equal to 0, (all other trip rates are zero).
The equivalent minimization for this UE program is identical to program
[7.3]. To verify this, note that in setting up the UE objective function for the
augmented network,

E |(-M,) do = -E M,qr, [7.8]
rs J rs

and [7.3a] follows immediately. Constraint [7.3b] is satisfied by the structure
of the modified network and constraint [7.3c] is the flow conservation con-
straint for this network (which guarantees that the trip rates are assigned to
the network).

The UE problem over the modified network can be solved by using any
UE algorithm, such as the convex combinations method. The algorithm would
essentially follow the same steps described in the preceding section. For exam-
ple, at every direction-finding iteration, the algorithm assigns 0, flow units to
the minimum "equivalent" travel-time path between r and r'. This path is, of
course, identical to the path chosen with the aforementioned adaptation of this
algorithm to the distribution/assignment model, and the sequence of link flows
generated will thus be identical.

Note that in the network representation of the distribution/assignment
problem, the O-D flows are link variables (the flow on links so-- r'). Since the
UE program has a unique solution in terms of link flows, the solution of the
distribution/assignment problem will be unique in terms of O-D flows as well
as link flows. The uniqueness of q,, can thus be established on the basis of the
structure of the modified network.

The joint UE distribution/assignment discussed thus far assumes that
motorists' choice of destination can be modeled by postulating that these
individuals choose the destination with the minimum net impedance. This
assumption implies that the attraction measure for a given destination is iden-
tical across all motorists. In practice, however, it is not clear that such mea-
sures can be calculated or estimated. Consequently, there may be no values
{Ms} for which the conditions outlined in Eqs. [7.5] hold. The value of this
model then is mainly pedagogical and illustrative.

� I

170

Chap. 7 Trip Distribution and Traffic Assignment Models

7.2 DISTRIBUTION/ASSIGNMENT
WITH DESTINATION DEMAND FUNCTIONS

The limitations of the UE-based distribution model presented in Section 7.1
have led transportation planning professionals to use trip distribution func-
tions. These functions determine the number of trips that should be assigned
to each destination from each origin, given the respective travel times. Thus, at
equilibrium,

q,. = D,.(u.,) V r, s [7.9]

where D,.() is the demand function for O-D pair r-s, as in the variable-
demand problem discussed in Chapter 6. (In addition, of course, the UE
conditions have to be satisfied among all paths connecting each O-D pair.)
The difference between the variable-demand problem and the problem of dis-
tribution/assignment with destination demand functions is that the latter in-
cludes the "trip production" constraint,

q = O, V r [7.10]

Conditions [7.9] and [7.10] both have to be satisfied at equilibrium. This
system of equations, however, may not have a solution since the number of
equations exceeds the number of variables. To see this, consider the simple
network depicted in Figure 7.3. In this example, the link performance func-
tions are given by t = 1 + 2x, and t2 = 2 + x2 . The destination demand
functions are given by x1 = 4 - t and x2 = 4 - t2 , and the trip production
constraint is xl + x 2 = 3. These equations have to be solved simultaneously,
but no solution exists. For example, the solution of the performance and
destination demand functions is x = 1, x2* = 1. This solution, however, does
not satisfy the trip production constraints.

2

t-

Figure 73 Network example with two
O-D pairs and two links. The bottom
figure shows the link performance func-

*1 -I -2 %'2)

tions. x

� .__ __
_ A

171

Part III Extensions of User Equilibrium

As evident from Eqs. [7.9] and [7.10], the number of equations corre-
sponding to each origin exceeds the number of O-D flow variables by one.
This difficulty can be overcome by using destination demand functions which
satisfy the trip production constraint. In other words, if the demand function is
such that

D,(u,s) = O V r [7.11]

then the trip production constraint is redundant, and the demand conditions
can be solved (given the O-D travel times) with no particular difficulty.

Distribution/Assignment with Logit Functions

One of the simplest ways to ensure that the trip production constraint is
an integral part of the demand function is to specify this function as a share
model. In a share model, the flow between origin r and destination s is given
by

qs = O, Ps(U,) V r, s [7.12]

where u, = (..., u, ...); that is, u, is the vector of travel times between origin
r and all destinations. The quantity P,,(u,) can be interpreted as the share of
the total flow originating at r that destination s is attracting. P,, satisfies the
properties of a probability measure, that is,

0 < P,,(.) < 1 [7.13a]

Ps()= 1 [7.13b]

Thus the trip production constraint (Eq. [7.10]) can be satisfied by using any
share model in Eq. [7.9].

One of the most widely used share models is based on the logit formula
introduced in Section 6.4. In the trip distribution problem, a multinomial logit
formula is used, leading to the following destination demand model:

e- (u -(-Ms)
qrs = Or , e -y(u. -M) V r, s [7.14]

Vm

where (the constant) Ms is the trip attraction measure associated with destina-
tion s and y is a parameter of the logit model. It is reasonable to assume that
Ms > 0 V s and that y > 0 for the model specified in Eq. [7.14]. This means
that the O-D flows increase when either the travel time to the destination
decreases or the destination attraction increases (assuming that all other fac-
tors remain unchanged). Both types of parameters ({M},) and y) can be esti-
mated (calibrated) from observations regarding motorists' choices of destina-
tion. Issues associated with the preparation of data and estimation of logit
models are discussed in Chapter 13.

At equilibrium, then, the flow pattern should be such that the trip rates
satisfy Eqs. [7.14] and the UE conditions hold for all O-D pairs. As with the

_ ___ _ _ �___ _ _ _ ___ �__�

172

Chap. 7 Trip Distribution and Traffic Assignment Models

other equilibration problems discussed in this text, this problem can also be
solved by minimizing an equivalent mathematical program. This approach is
outlined below.

Consider the mathematical programt

min z(x, q) = E t(o) do + - E (qr In q, - q,) - E M. q,. [7.15a]
a O V ri rs

subject to

Zfk = qrs V r, s (u.) [7.15b]
k

qr = Or V r) [7.15c]

fks O V k, r, s [7.15d]

The first-order conditions for this program include the familiar UE equations
for the basic network. As before, these conditions can be obtained by differ-
entiating the Lagrangian of [7.15] with respect to the path-flow variables,
{fs}. The first-order conditions with respect to the O-D flow variables are

- In qr + Ur - M - = V r, s [7.16a]

These conditions can be rewritten as

qr = e-Y(U"-MS-,) V r, s [7.16b]

Equation [7.16b] can be interpreted as a demand model for trips between each
O-D pair r and s. The dual variable pr, however, appears in the equation. The
value of this variable is not known in advance of the equilibration process, and
thus a demand model such as Eq. [7.16b] cannot be calibrated from observa-
tions of O-D travel times and flows. Furthermore, this O-D demand function
would not satisfy the trip production constraints (Eqs. [7.15c]) which are part
of the first-order conditions. For the production constraint to hold at equilib-
rium, Eq. [7.16b] can be substituted in [7.15c] to give

Or = E e - y("Ur -M. - ,r) V r [7.17]
m

Equations [7.16b] and [7.17] can be divided by each other to obtain the
multinomial logit formula, that is,

qrs e- (ur - M. - ,r) e - Y(u, - M,)

Or - e - (" rm- Mm - Pr) e- (ur - Mm) [7.18]
m im

tNote that lim q, In qr, = 0 and therefore q, In q,, can be assumed to be zero for qr, = 0.

Note also that the constraint 0 < q, < O, V r, s, could be added to the formulation of program
[7.15]. This constraint, however, does not change the first-order conditions given in Eqs. [7.16].
Due to the shape of the objective function, it will always be satisfied at the minimum.

__.__._. - - - - -~~~~~~~~~_ - ~ ~ ~ - - _ -

173

Part III Extensions of User Equilibrium

as ey" drops out of the ratio. Thus the first-order conditions of program [7.15]
are the equilibrium conditions for the distribution/assignment problem with
logit destination demand functions.

Direct Algorithm and Solution
by Network Representation

The logit distribution/assignment problem formulated in Eqs. [7.15] can
be solved by a simple adaptation of the convex combinations method. In fact,
the LP solved in the direction-finding step is identical to the one discussed in
Section 7.1 (see Eqs. [7.6] and the related discussion) except for an added term
in the objective function. Again, the linear program that has to be solved at
the nth iteration can be written in terms of path-flow variables, as follows:

az[x(f), q(f")] smin z"(g)= E [f' A
rs k kf

= E E [ck + - In (q,) - M]gs [7.19a]
rs k V

subject to

E (Ck = r [7.19b]

gA 20 V k, r, s [7.19c]

The solution of this program parallels the solution of program [7.6]. Its
details are left to the reader (see Problem 7.8). Note only that once the auxili-
ary flows, {ye} and {vn}, have been obtained, the move size in the descent
direction {yn - x} and {v", - q} is obtained by searching for the minimum of
the objective function [7.17a] along the descent direction. In other words, the
move size, cn,, is given by the solution of the program

C' x+ a(y - x)
min z(oa)= ta(w) do

O<a 1 ao

+ - [qs + o(v - q)]{ln [qn + oc(vn - q)] - 1 - yMS} [7.20]

The convergence criterion in this algorithm can be based on the distri-
bution model. In other words, the algorithm can be terminated when

qn+ 1 e- " - M)
°. - -*-M) V r, s [7.21]

m

An actual criterion can be based on the sum of the relative difference between
both sides of Eq. [7.21] over all O-D pairs. This criterion is based on con-
siderations similar to those used in Section 6.2 for variable-demand UE pro-
gram (see Eq. [6.20] and the related discussion). As suggested there, this

__·I

174

Chap. 7 Trip Distribution and Traffic Assignment Models

criterion can be used in conjunction with a criterion measuring the satisfaction
of the UE conditions over the basic network.

The algorithm, then, can be summarized as follows:

Step 0: Initialization. Find a set of feasible flows {q"}, {x,}. Set n:= 1.

Step 1: Travel-time update. Calculate t = t(x"), V a.

Step 2: Direction finding. Find {g"} that minimize program [7.19]. Set

Ya = E gk a,
rs k

v= s gr"
k

Step 3: Move-size determination. Find the a. that solves program
[7.20].

Step 4: Flow update. Set

xn+ = x + a(Y-:)

qs = q,, + a,(v, - q,)

Step 5: Convergence test. If convergence is not achieved, set n:= n + 1
and go to step 1. Otherwise, terminate; the solution is {x"+ }, {q,"+ 1}.

The logit distribution/assignment problem can also be solved by using a
standard UE algorithm, provided that the network representation of the prob-
lem is modified. The augmented network is identical to the one shown in
Figure 7.2, including dummy (or virtual) links connecting every destination, s,
to a dummy (virtual) destination, r'. The equivalent performance functions on
these links are given by

1
t.,, =In q - Ms V r, s [7.22]

The equivalent UE minimization on this modified network (with O-D trip
rates between r and r' given by O,) is identical to the logit distri-
bution/assignment program given in Eqs. [7.15], as the reader can check (see
Problem 7.9a).t The equivalent UE program on the modified network can be
solved with any standard UE algorithm. At equilibrium, the travel time on all
used paths between each O-D pair of the augmented network (so-- r') would
exhibit the same ("equivalent") travel time. This condition on the augmented
network is equivalent to the first-order conditions given in Eq. [7.18] (see
Problem 7.9b).

Note that due to the logarithmic form of the performance curves on the

tNote that by the construction of the network in Fig. 7.2, q,,, = q,, since only flow between
r and r' can use the link from s to r'.

_ _ _·___..___

175

Part III Extensions of User Equilibrium

dummy links, these links cannot admit zero flow at any iteration. One safe-
guard against this is the truncation of the equivalent performance functions at
an appropriate point. In other words, set t,, to

In q - Ms for qs > E

InE - M for qs < E

where E is a sufficiently small amount of flow.
Particular care should be taken during the initialization phase since the

modified network cannot be initialized with zero flow. A good initialization
procedure is to calculate the travel times on the minimum path connecting
each O-D pair of the basic network, based on empty network travel times.
These O-D travel times, {us}, are then used to determine the initial O-D flow
through an application of a logit distribution formula, that is,

e - ("'°'- M,)
qr° = rs 2 e - , M [7.23]

m

The nature of the flow sequence generated by the convex combinations algo-
rithm will tend to avoid a solution in which q = 0 once an initial feasible
solution is given. At the equilibrium point itself it will always be true that
q,s > 0 as mentioned above (see footnote associated with Eq. [7.15]).

Example

Consider the simple network example shown in Figure 7.3. This network
includes two links (indexed 1 and 2) leading to two destinations (denoted 1
and 2, respectively). The performance functions on these links are given by

t, = 1 + 2x, [7.24a]

t2 = 2 + x2 [7.24b]

The total flow emanating from the origin is O = 4 units of flow. Assume now
that at equilibrium, the flow from the origin to each of the destinations should
conform to a logit model with y = 1.0, and Ms = 0 for each destination, that is,

X! e - t j

4 = e-" + e-t 2 [7.24c]

X2 e-2
4 - e + e-2 [7.24d]

The system of equations [7.24] includes four equations in four unknowns
(x1, x2 , t, and t 2). Note that the trip production constraint is embedded in
Eqs. [7.24c] and [7.24d]. (For example, Eq. [7.24d] can be replaced by the

�_ _� __� __ __ _. ____ __I_ 1 ___ I_

176

Chap. 7 Trip Distribution and Traffic Assignment Models

Figure 7.4 Network representation for
solving the joint distribution/assignment
problem of Figure 7.3 using a UE algo-
rithm.

condition x2 = 4 - xl.) These equations can be solved simultaneously by sub-
stituting the link performance functions and the flow conservation constraint
in the logit formula [7.24c]. The result is a simple equation in terms of xl, that
is,

x I 1

4 1 + e 3 x -

or

3x1-5-In (- 1)=O [7.25]

The solution of this equation is x1 = 1.9 flow units,t implying that x2 = 2.1,
t = 4.8, and t2 = 4.1.

This example can also be solved by using the equivalent minimization or
network representation approach developed in this section. The modified net-
work for this problem includes one dummy link connecting each of the desti-
nations in Figure 7.3 to a "super destination," as shown in Figure 7.4. The
performance functions for the dummy links are given by In x and In x2 for
links 1 -, D and 2 - D, respectively.

The equivalent UE minimization formulation for the modified network
in Figure 7.4 is given by

min z(x, x 2) = (1 + 2c) dc + (2 + co) dco

+ In co dco + Iln co dco [7.26a]

subject to

xl + x2 = 4 [7.26b]

xl, x2 > 0 [7.26c]

When the objective function is integrated and the flow conservation con-
straint, x2 = 4 - xl, is substituted in, the result is

z(xl) = 1½x - 5xl + 16 + xl In xl - xl + (4- xl) n (4- xl)-4 + xl

tMore accurately, x = 1.91261 flow units.

- ^

177

Part II Extensions of User Equilibrium

The minimum of this function is found by solving

dz(x) = 3x - 5 + In x - In (4- xl) = O
dx

This equation is identical to [7.25] and its solution is x = 1.9 (a point that
satisfies constraint [7.26c]). As expected, the solution obtained for this exam-
ple by the equivalent network representation is indeed the correct equilibrium
flow pattern.

Computational Issues

The solution of the joint distribution/assignment program requires more
computational effort than the solution of the UE program. This effort can be
discussed in the framework of the network representation of this problem.
Since the distribution/assignment program requires the addition of a large
number of dummy links (equal to the product of the number of origins and the
number of destinations) and a number of dummy nodes (equal to the number
of origins), the computer memory requirements are larger than those associ-
ated with the solution of a standard UE problem. In addition, the compu-
tation of each minimum path tree (in the process of solving the linear pro-
gram) will require more CPU time than is needed with the fixed-demand UE
case, due to the larger size of the equivalent network. The additional burden of
the trip distribution model, however, is not limited to the core requirements
and the computational effort needed to find the minimum path trees. In the
case of the distribution/assignment model, the application of a standard UE
equilibration method such as the convex combination algorithm may be quite
inefficient (whether the algorithm is applied directly or to the augmented
network representation). The reason is that at every iteration only one destina-
tion is loaded with flow from any given origin. In other words, only the
destination m for which

n 1u, +- In q- Mm = min u + - In qs --MS [7.27]
V Vs V

is loaded with flow. This flow, O., is assigned to the (current) shortest path
between r and m (the travel time on which is urn). Consequently, the algorithm
would not terminate before most destinations s, for which q,s > 0 at equilibri-
um, have been "visited" (at least once) from origin r.

The implications of these computational requirements are that the size of
networks for which joint distribution/assignment problems can be solved is
substantially smaller than those for which a standard (fixed-demand) UE can
be solved. These observations give rise to the use of another algorithm which
does not suffer from the above-mentioned drawbacks. This algorithm is de-
scribed in the following section.

·1

178

Chap. 7 Trip Distribution and Traffic Assignment Models

Double-Stage Algorithm

The double-stage algorithm is similar to the convex combinations algo-
rithm in all aspects but the direction-finding step. This algorithm uses a de-
scent direction in which every destination is loaded with trips from each origin
at every iteration. This can be accomplished by executing the direction-finding
step in two stages, as follows:

Direction finding:

(a) Calculate the shortest travel-time path from each origin, r, to all destina-
tions, based on {t"}. Let u' denote the shortest travel time from r to s.

(b) Determine the auxiliary O-D flows by applying a logit distribution
model, that is,

Oe - ('.-M,)
rs Ye-re-M^)

m

(c) Assign v to the minimum-travel-time path (identified above) between r
and s. This yields (after all {v"} have been assigned) a link-flow pattern

The rest of the algorithmic iterations are identical to those of the convex
combinations method. The search direction is defined in terms of {(ya - x)}
and {(v" - qn)} and the new solution is determined by the optimal convex
combination of the auxiliary and the last solution. This optimal combination
is found by solving a one-dimensional program similar to the one shown in
Eq. [7.20], updating the flow variables and checking for convergence.t

The search direction used in this (double-stage) algorithm can be regard-
ed as the solution of the following mathematical program:

min (y, v)= t y + vrln v,,r- 1] - Vs M, [7.28a]
a Y rs rs

subject to

E g' = v V r, s [7.28b]
k

v, = O, V r [7.28c]

g' 20 V k, r, s [7.28d]

This program is convex (see Problem 7.10) and thus its first-order conditions

tThe convergence check can be based on the objective function values, successive flow
patterns (including both O-D and link flows), travel times over the basic network, or by a
combined criterion.

- _· ____ ____ · _· _

179

Part III Extensions of User Equilibrium

are sufficient for a minimum. These first-order conditions are

(c[S -u ,) = V k, r, s [7.29a]

cS" - us 0 V k, r, s [7.29b]

Vn _ e - - M,)
V r, s [7.29c]

Or - e- (u- M,)

and constraints [7.28b] through [7.28d]. Thus, at the solution of program
[7.28], the auxiliary O-D flows are given by the logit model. Given the (auxili-
ary) O-D flows, objective function [7.28a] can be minimizing by loading all
{v",} to the (current) minimum travel-time path between r and s. This will
result in a situation in which only one path (the travel time on which is u)
between every O-D pair is loaded with flow and Eqs. [7.29a] and [7.29b] are
satisfied. Thus the direction-finding step of the double-stage algorithm can be
regarded as a solution of program [7.28], while the direction-finding step of
the convex combination method can be regarded as a solution of program
[7.19], which is derived from the linearized objective function of the equivalent
minimization.

The proof that the double-stage algorithm minimizes the equivalent dis-
tribution/assignment program (Eqs. [7.15]) is given in the references men-
tioned in Section 7.6. The reader is asked (in Problem 7.10) to provide a part
of this proof, showing that this algorithm generates a descent direction at
every iteration.

Convergence of the double-stage algorithm is considerably faster than
convergence of the convex combinations algorithm for solving logit-based
distribution/assignment problems. In particular, when the network is lightly
congested, the computational effort posed by this algorithm is comparable to
the effort required to solve a standard (fixed-demand) UE problem. As conges-
tion increases, the relative advantage of the double-stage algorithm over the
convex combinations method decreases. For the range of congestion found in
practice, however, the double-stage algorithm is still the preferred approach.

Note that a similar double-stage algorithm can also be used to minimize
the equivalent program associated with the variable-demand user-equilibrium
program discussed in Chapter 6. As the reader is asked to show (see Problem
7.11), the application of the double-stage algorithm to the variable-demand
problem is virtually identical to the application of this algorithm to the joint
distribution/assignment problem.

7.3 DOUBLY CONSTRAINED MODELS

The trip distribution models discussed thus far in this chapter assume that the
number of trips leaving each origin is known and that the problem is one of
finding how these trips are distributed among the various destinations. A
different approach to modeling trip distribution assumes that both the total

_ .___ __ __ __ ___ __ __ I I_ �_

180

Chap. 7 Trip Distribution and Traffic Assignment Models

flow generated at each origin node and the total flow attracted to each desti-
nation node are fixed and known. The problem is still that of finding the O-D
flows, but the flows become subject to the two sets of constraints (see Eqs.
[7.1] and [7.2])

qr,, = O, V r [7.30a]
s

qrs = D, V s [7.30b]

At equilibrium, the O-D flows are derived from some trip distribution model,
and also satisfy these constraints. The distribution model used in conjunction
with these constraints is explained in this section. This explanation leads to the
formulation of an appropriate equivalent minimization for the doubly con-
strained distribution/assignment model.

It is reasonable to assume that the flow between any O-D pair r-s, q,,
will be proportional to the total number of trips leaving the origin, Or, and the
total number of trips attracted to the destination, D,. Naturally, the equilibri-
um O-D flow should also depend on the level of service between the origin
and the destination. In other words, q should also depend on f(u,), where
f(.) is some function and u is the O-D travel time. This dependence is
reflected in the following trip distribution model:

q = KO, Df(u,.) V r, s [7.31]

where K is a constant. One example of such a relationship is the widely used
gravity model.t In this model f(u,) = u, -2, that is,

O·Dqrs = K 2 V r, s [7.32]
Urs

Constraints [7.30] can be satisfied by introducing sets of constants {A,}
and {B,} associated with the origin and destination zones respectively. The
trip distribution model then becomes

qr = ArB, OrDsf (Us) V r, s [7.33]
where

Ar = i B S D frs) r [7.34a]Z Bs D f(u.,)

Bs = AXO f() V s [7.34b]

tThis model assumes that the number of trips between any two urban zones parallels the
gravitational force between two bodies. The number of O-D trips is assumed to be proportional
to the total trip production of the origin and the total trip attraction of the destination (these are
analogous to the masses of the two bodies), and inversely proportional to the square of the travel
time between the origin and the destination (which is analogous to the distance between the
bodies).

___.. ----------

181

Part III Extensions of User Equilibrium

By substituting Eqs. [7.34] into [7.33], it can be easily verified that constraints
[7.30] are satisfied. The problem addressed in this section is how to solve for
the coefficients Ar and Bs in Eqs. [7.34], and what the proper function form of
f(u,s) is. This is described in the context of a specific approach to this
problem-one that is based on entropy maximization principles.

Entropy Model

A given set of O-D flows q,s) that satisfies the flow conservation con-
straints is the aggregate result of many individual travel decisions.t There
can be many combinations of individual decisions (each such combination is
called "a state" of the system) which result in the same set of O-D flows q =
(..., q, ...). The basic assumption of the approach discussed here is that all
states are equally likely to occur and thus the likelihood of a given distribution
pattern, q, occurring is proportional to the number of states that result in this
pattern while satisfying the constraints. The number of states associated with a
particular distribution, N(q), is given by

N(q) = Q [7.35]
H q,,!
r, s

where Q is the total number of trips in the system (i.e., Q = A, Ys qrs). The set
of O-D flows with the highest likelihood of occurring is the set with the
maximum number of states. This set of O-D flows can be determined by
maximizing Eq. [7.35], or its logarithm,§ subject to the flow conservation
constraints. The objective function is then

Qv
max In N(q)= In = n Q! - Y In q,,! [7.36]

rs

The term In Q! in Eq. [7.36] is a constant that can be dropped from the
objective function. Furthermore, the maximization of In N(q) is equivalent to
the minimization of -In N(q), and thus the objective function can be ex-

tFor the purposes of this discussion, the trip rate is assumed to be an integer representing
the number of individuals traveling from r to s during the design period.

JFormula [7.35] gives the number of permutations of Q objects of which each q,, are alike.
Here the objects are the O-D trips and the formula gives the number of permutations in which Q
trips can produce a given set of O-D flows, q,s).

§In many cases it is easier to maximize the logarithm of a function than the function itself.
Since the logarithm is a monotonic transformation, the same values of the decision variables will
maximize both the function and its logarithm. This approach is used widely in statistical appli-
cation for maximizing likelihood functions.

Note that the logarithm of the probability of occurrence of the most likely molecular
arrangement in a closed thermodynamic system is known as the entropy of the system. This
analogy is the source of the model's name.

-II� ---�---·--r�-�r --�-- �--r�-

182

Chap. 7 Trip Distribution and Traffic Assignment Models

pressed as

mi In q,,!

Using Stirling's formula,: this objective function becomes

min E (q. In q,s - q,) [7.37]
Fs

The entropy trip distribution model therefore calls for the most likely O-D
trip rate pattern (under the model's assumptions) subject to the trip pro-
duction and attraction constraints, given by Eqs. [7.30a] and [7.30b], respec-
tively.

Combining the entropy concept with the approach utilized throughout
this text (that of using equivalent mathematical programs to solve for equilib-
rium), a joint entropy distribution/assignment program can be formulated.
Consider the following minimization:

ra 1
min z(x, q) = E ta(C0) d) + (q. In qs- q) [7.38a]

subject to

f, = qr V r, s (u,,) [7.38b]
k

q, = O, V r (#,) [7.38c]

Z q,s = D, V s (A) [7.38d]

fk 2 0 v k, r, s [7.38e]

In this program ~ is a parameter (calibrated from data) and the dual variables
associated with the flow conservation constraints are given in parentheses next
to these constraints. The solution of this program is a set of O-D trip rates
and link flows that satisfies the following requirements: (1) the link flows are
such that the UE criterion is satisfied; (2) the O-D flows satisfy a distribution
model of the form given in Eq. [7.33], thereby satisfying the production and
attraction constraint; and (3) the O-D flows satisfy a distribution model that
is based on the entropy concept.

The last requirement stems from the inclusion of the entropy term in
objective function [7.38a]. To see that the first two requirements are satisfied
at the minimum of program [7.38], its first-order conditions are derived below,
focusing on the O-D flows; as the reader can check (see Problem 7.14), the
derivatives of the Lagrangian of program [7.38] with respect to the path-flow
variables results in the familiar UE conditions for the basic network. The
derivatives of this Lagrangian with respect to the O-D flow variable q,, are

tStirling's approximation is log x! x log x - x.

_____.__^_ ._ �__�_ ·

183

Part III Extensions of User Equilibrium

given byt

In q, + u - - s = 0 V r, s [7.39a]

These equations imply that

qrs = e-C("s-'-A) V r, s [7.39b]

When these expressions are substituted into the flow conservation constraints,
the result is

0,
er r V r [7.40a]

S

i X e Ds V S [7.40b]

To obtain the result in a more familiar form, denote

Ar - V r [7.41a]
Or

B, =- s [7.41b]
D,

Equation [7.39b] can now be written as

qrs = A, Bs O, Ds e- V r, s [7.42]

where

A, = D V r [7.43a]D sse-cu

B = V s [7.43b]Z ArOre-c'-
r

Thus the entropy-based equivalent minimization in program [7.38] results in
an O-D flow pattern that is consistent with the requirements of a joint trip
distribution/traffic assignment model. The entropy model is characterized by
the exponential decay form of the travel-time function; that is, in this model
f(u,r) = e-U" s, where C is a model piarameter.:

tRecall that

d
- (x In x - x) = In x
dx

tThe value of c can be found by calibration methods, using a data set that includes an
O-D matrix and O-D travel times. Some of these methods are mentioned in Chapter 13, and
others can be found in the literature concerning the calibration of gravity models (see Section 7.5).

184

Chap. 7 Trip Distribution and Traffic Assignment Models

Solution by the Convex Combinations Algorithm

The entropy distribution/assignment model can be solved by using the
convex combinations algorithm. Following the description of this algorithm
given in Sections 6.2 and 7.2, let g"s and v,, represent the auxiliary flow vari-
ables corresponding to fs and qs, respectively. The linear program at the nth
iteration of the algorithm can then be written as

min z"(g, = [+ In qr g'k [7.44a]min z"(g, v)= 2n g' O f
rs k afkk

subject to

vr =Or r [7.44b]
s

s vr= D. V s [7.44c]
r

tgs = vrs V r, s [7.44d]
k

grk O0 V k, r, s [7.44e]

If the set of auxiliary O-D flows that solves program [7.44], {v'}, is known,
this program can be decomposed by O-D pair. Clearly, the objective function
of the linear program will be minimized, in this case, by assigning all O-D
flows (i.e., v) to the minimum-travel-time path connecting each O-D pair r-s.
The problem is then to find {vs}. Let the travel time on the shortest path
connecting r to s, at the nth iteration, be denoted by u. The problem of
finding {v } can now be written as (see program [7.44])t

rm =~ r "' UIn [7.45a]min z"(v) = ug, +In q v [7.45a]

subject to

Ev, = Or V r [7.45b]

E r = Ds V s [7.45c]

vr 2> 0 V r, s [7.45d]

The problem defined by Eqs. [7.45] can be described as follows: Find the
optimal flow pattern by which a set of supply depots (indexed by r) can ship a
given commodity to a set of demand depots (indexed by s). The total amount
available at each supply depot is 0,, the total amount consumed at each
demand depot is D,, and the cost of transporting a unit of the commodity

tBased on the above-mentioned considerations, objective function [7.44a] can be written
as rs [(urs + (1/) In q) L gs]. Constraint [7.44d] can then be substituted in this objective
function to obtain objective function [7.45a].

_ _______ ___-----

185

Part III Extensions of User Equilibrium

under consideration between depots r and s is c = us + (1/4) In q. The
objective is to find the set of flow variables, {v'r}, that minimizes the total
transportation costs. This program is known in the operations research litera-
ture as "Hitchcock's transportation problem." Section 7.4 describes one of the
most efficient algorithms for solving this program.

Once the auxiliary O-D flows, {v,}, are determined, the auxiliary link
flows, {ya}, can be found by assigning v, to the shortest path connecting each
O-D pair r-s. The move size is determined by minimizing the objective func-
tion [7.38a] along the descent direction, and the convergence criterion can be
set in a manner similar to the criteria used earlier in this text. The algorithm,
then, can be summarized as follows:

Step 0: Initialization. Find a feasible solution {q"}, {x"}. Set n= 1.

Step 1: Travel-time update. Set t = t(xa).

Step 2: Direction finding.
(a) Compute {us}; set cJ = u" + (1/C) In q".
(b) Solve Hitchcock's transportation problem with costs {c"s}. This

yields {v"s}.

(c) Assign {v } to the minimum paths identified in (a). This yields
{Ya}.

Step 3: Move-size determination. Find a, that solves

x: + _(Y: - x)

min E ta()

+ C E [q'r + (v' - qs)]{ln [q" + (vs - qrs)] - 1}
rs

Step 4: Flow update. Set

Xa = Xa + an(Ya- x") V a

qs+ = qs + a,(vs - q") V r, s

Step 5: Convergence criterion. If Za I xa+ - x Jl/x < , stop. Other-
wise, set n = n + 1 and go to step 1.

Note that the direction-finding step of this algorithm involves the storage
of the shortest paths identified in step 2a while the transportation problem is
being solved in step 2b. These paths are assigned flow only in step 2c. This
increases the computer memory requirements of the algorithm. To avoid that,
the minimum paths can be computed anew in step 2c, meaning that the
computational effort is virtually doubled.

Solution of the doubly constrained model is likely to require a smaller
number of iterations than the solution of the singly constrained model when
the convex combinations method is used for both. The reason is that in typical

I

186

Chap. 7 Trip Distribution and Traffic Assignment Models

networks more than one destination is being visited from each origin. When
the convex combinations method is being applied to the doubly constrained
model, each iteration involves flow assignment from each origin to two or
more destinations (see Problem 7.18). By comparison, the solution of the singly
constrained model with this method involves the assignment of flow to only
one destination as mentioned before. Consequently, the former may involve a
smaller number of iterations. The computational effort required per iteration,
however, may be higher for the doubly constrained model due to the need to
solve Hitchcock's problem at every iteration and the above-mentioned recalcu-
lation (or storage) of the shortest-path trees.

Double-Stage Algorithm

A double-stage algorithm similar to the one described in connection with
the singly constrained model can be developed for solving this problem as
well. At each iteration the direction-finding step would include identification of
all the minimum O-D travel times {uls}. These values will then be used to
solve a doubly constrained entropy model. In other words, the auxiliary O-D
flows, {vs}, will be found by solving the program (see Eqs. [7.37] and [7.38])

min z(v) = E ul vr, + I (, In v, - v,,) [7.46]
rs rs

subject to constraints [7.38c], [7.38d], and nonnegativity (all expressed in
terms of {vr,}). The auxiliary O-D flow variables are then assigned to the
minimum path connecting each O-D pair. The reader is asked (in Problem
7.15) to investigate the application of the double-stage algorithm to the doubly
constrained distribution/assignment problem.

Note that unlike the case with singly constrained models, the double-
stage algorithm has no apparent advantage over the convex combinations
method, when both are applied to the solution of doubly constrained models.
The reasons are twofold. First, in both algorithms the O-D flows from all
origins to all destinations are determined simultaneously. In other words, even
in the applications of the convex combinations method, more than one desti-
nation can be loaded from each origin at each iteration. Consequently, the
convex combinations method is not as inefficient as it is in the case of the
singly constrained model. Second, the auxiliary problem [7.46] is a nonlinear
program representing the gravity model. It is considerably more difficult to
solve than Hitchcock's transportation problem, which has to be solved as part
of the convex combinations method.

These considerations imply, then, that the singly constrained model
should be solved by using the double-stage algorithm, whereas the doubly
constrained model should be solved by using the convex combinations
method. Given this use of the algorithms, the doubly constrained model re-
quires a higher computational effort to solve, than the singly constrained
model. Even though it is not clear which model will require more iterations,

__ _._ _____~~~~~~~~~~~~~~~~~~~~~~~~~~..._ _

187

Part III Extensions of User Equilibrium

the effort associated with each of the iterations required to solve the doubly
constrained model is significantly higher.

Evaluation

Gravity models in general, and the entropy models in particular, are
based on parallels drawn between individual travel decisions and the laws of
physics. Many researchers argue that such parallels are not valid since urban
flow patterns result from collective individual choices. Such travel choices
should, according to this view, be modeled on the basis of economic theory
and behavioral assumptions. Program [7.38] can nevertheless be viewed as a
mathematical construct, used to solve doubly constrained distribution/assign-
ment problems.

Yet even this view is unacceptable to some travel behavior analysts, who
argue that singly constrained models are more valid than doubly constrained
models. The reason for this is that the network flows result from the daily
travel choice process of individuals. These individuals make their decisions as
to which destination to visit, while at the trip origin. These trip origins are
determined by long-term considerations, and thus when the daily travel
choices are modeled, the total number of trips originating from each zone can
be regarded as fixed. The total flow arriving at destination nodes, on the other
hand, is determined by the sum of many decision processes conducted daily at
the origin nodes. In fact, it is the outcome of these decision processes that is
modeled in the joint distribution/assignment problem. Constraining the flow
destined for a given node is thus a constraint on the outcome of the model,
which can be compared to a constraint on the flow on a given link of the basic
network. The point of view explained above may be particularly appropriate
for modeling nonwork trips. For work trips, however, both trip origins (for
example, residence locations) and trip destinations (for example, work places)
are based on long-term decisions. Consequently, other researchers argue that
in this case, doubly constrained models may be appropriate.

Another consideration in the choice between singly and doubly con-
strained models is the application of the model. Assume, for example, that the
model is to be used for predicting the travel consequences of certain improve-
ments to the transportation system. For both doubly and singly constrained
models, the number of trips originating at each origin node have to be pre-
dicted exogenously to the model. If there are reasons to believe that the
number of trips attracted to each destination will be fixed, and this number
can be predicted before the model is used, the doubly constrained model is
appropriate. If, on the other hand, the number of trips going into each destina-
tion is to be determined based on projections of destination attractions and
transportation level of service considerations (i.e., congestion, parking avail-
ability, etc.), a singly constrained model is appropriate.

In general, there is no empirical basis for the preference of one model
over another, and considerations such as those mentioned above should guide

_·

188

Chap. 7 Trip Distribution and Traffic Assignment Models

the model selection. The total flow attracted to a given destination node, if
available in the data, does not necessarily mean that a doubly constrained
model should be used. These data can be utilized a posteriori to validate the
results of a singly constrained model.

As mentioned before, the solution of the doubly constrained model, with
the convex combinations method, requires solving Hitchcock's transportation
problem. The next section describes an algorithm for solving this problem.

7.4 SOLVING HITCHCOCK'S TRANSPORTATION
PROBLEMt

Hitchcock's transportation problem can be described as a minimum-cost flow
problem over the network depicted in Figure 7.5. This network includes I
supply and J demand nodes connected by direct links. The notations used in
this section to identify the links are the same as those used in conjunction with
the minimum-path algorithm described in Section 5.4. Accordingly, let cij and
xi denote the (fixed) cost (per unit of flow) and the flow, respectively, on the
link leading from node i to node j. Furthermore, let Oi denote the total flow
supplied by node i and let Dj denote the total flow required at node j. Using
these notations, Hitchcock's transportation problem is

I J

min z(x) = E Ec cxi [7.47a]
i=1 =1

subject to

xi = Oi v i = 1, 2, I [7.47b]

xij = Dj v j = 1, 2,..., J [7.47c]

x j 0 V i,j [7.47d]

Assume further that the total supply equals the total demand,t that is,

O i = Di [7.48]

An important characteristic of the Hitchcock problem is that, at opti-
mality, the number of links carrying flow equals the minimum number of links
that can connect I supply nodes to J demand nodes. In other words, there
should be (I + J - 1) links for which x 2 0. On all other links x = 0. This
characteristic is the basis for the algorithm described here, an algorithm that
entails four basic steps:

Step 1: Select an initial feasible solution with I + J- 1 flow-carrying
links.

tThis section can be skipped without loss of continuity.

tThis requirement guarantees the existence of a feasible solution to program [7.47].

- .· ___�131 ___

189

Part III Extensions of User Equilibrium

SUPPLY DEMAND
NODES NODES

Figure 7.5 Classical "transportation
problem" network, including I supply
nodes and J consumption (demand)
nodes.

Step 2: Check whether the solution can be improved by using a cur-
rently empty link. If not, stop; if yes, continue.

Step 3: Determine the amount of flow that can be assigned to the new
link without violating any constraint.

Step 4: Adjust the flow on all other flow-carrying links and update the
network. Go to step 2.

These steps are detailed below. It is important to remember that the algorithm
keeps only I + J - 1 links loaded with flow. This set of links is known as the
"basis." When a solution can be improved by using a (currently) empty link
(identified in step 2) one (currently) loaded link will be emptied (in step 4). In
other words, when one link enters the basis, another link leaves it.

Step 1. Step 1 of the process involves finding an initial feasible solu-
tion. The core of many of the initialization procedures suggested in the litera-
ture is in the link examination process. For a link i-+j, this process consists of
the following steps:

(a) If Oi < D, assign flow Oi to link i--+j. Remove node i (and all links
emanating from it) from further consideration. Set Di := Di - 0i.

(b) If O, > Di , assign flow Dj to link i-.j. Remove node j (and all links
leading to it) from further consideration. Set Oi:= Oi - Di .

(c) If Oi = D, assign flow 0, to link i-fj. Remove node j (and all links
leading to it) from further consideration. Set Oi = O.t

The initialization involves an iterative examination process. At each iteration a
single link, which has not yet been considered (and was not discarded at an

tAlternatively, node i can be removed and D can be set to zero.

190

Chap. 7 Trip Distribution and Traffic Assignment Models

earlier iteration) is examined. The order in which links are examined can be
arbitrary but a good ordering can lead to a better initial solution. The algo-
rithm terminates when either a single demand or a single supply node is left.
At this point the remaining flow is assigned either from the last supply node to
the remaining demand nodes or from the remaining supply nodes to the last
demand node.

One of the most efficient approaches for determining the order in which
links are to be examined is known as the "penalty method." This approach is
based on a "penalty" computed for each node. The penalty is the absolute
value of the difference between the two smallest costs on links leading to the
node (if it is a demand node) or emanating from it (if it is a supply node). In
order to choose the link to be examined, the node with the highest penalty
value (which may be either a supply or a demand node) is identified. The link
to be examined is the smallest cost link leading to it (for a demand node) or
emanating from it (if it is a supply node). Once a link is examined, the penal-
ties are recomputed and a new link is chosen for examination.

As an example, consider the problem depicted in Figure 7.6. This prob-
lem involves three supply nodes and four demand nodes. The supply and
demand values are shown next to each node and the shipping cost associated
with each link (ci) is shown in the square drawn in that link. The table
summarizes all these costs.

SUPPLY
NODES

Ol= 80

O2- 200

03= 120

DEMAND
NODES

D4 - 100

D5= 70

D6= 110

D7= 120

Figure 7.6 Transportation problem net-
work example with three supply nodes
and four demand nodes. The figure shows
supply and demand quantities as well as
link costs (in the squares and in the
bottom table).

Link Costs

2 1 2 6

) 1 -2 7 -3

(-1 5 3 4

191

Part III Extensions of User Equilibrium

Oi Penalty

(80] 1

(200)

(120)

Penalty Dj

2 (100)

3 (70]

1 (110)

7 (120)

4

Figure 7.7 The original penalties for the network example. These penalties indicate
that link 2- 7 should be examined first. (Node 7 is associated with the highest
penalty and link 2 -. 7 with the lowest cost among all links entering node 7.)

Figure 7.7 depicts the original penalties and Figure 7.8 depicts the se-
quence of iterations of the initialization procedure. The final product of this
process (which generates an initial feasible solution to the overall procedure) is
given in Figure 7.9.

Step 2. The second step in the algorithm is to check whether the use
of a currently empty link can improve the value of the objective function. An

Figure 7.8 Iterations of the initialization procedure (using the penalty method). (a)
Link 2-, 7 is examined and assigned a flow of 120 units. Links 1 -- 7 and 3 -. 7 are
assigned zero flow. Node 7 is discarded from further considerations and the penal-
ties are recomputed. (b) Link 3 - 4 is examined. (c) Link 2-- 5 is examined. (d) The
remaining demand node is assigned, with the flow using the remaining links.

__

192

Chap. 7 Trip Distribution and Traffic Assignment Models

Figure 7.9 The initial solution.

elegant and efficient way of making this decision is to use the dual variables of
program [7.47]. Let {pi} and {} be the dual variables associated with the
supply and demand nodes (i.e., with constraints [7.47b] and [7.47c]), respec-
tively. The first-order conditions for this problem are

(cij - i - Ai)xij = 0 V i, j [7.49a]

Cij- - j 0 V i j [7.49b]

The rationale of the algorithm is to try to create a flow pattern for which
conditions [7.49] will hold. At every step of the iterative process there are
I + J - 1 loaded links (i.e., in the basis) and IJ - I - J + 1 empty ones. At
optimality, Eqs. [7.49] should hold for all links in the problem. As shown
below, the dual variables are constructed so that at each iteration of the
algorithm, c - ui- j = 0 for all links in the basis. Equations [7.49] are
violated, therefore, only when

Ckl - k - l < 0 [7.50]

for an empty link (not in the basis) kl. The quantity cij - ,i - Ij is known
as the "reduced cost" for link ij. Sending flow over an empty link with nega-
tive reduced cost (i.e., bringing it in to the basis by setting Xkl > 0 and

kl- k - = 0) is a clear move toward optimality (assuming no new vio-
lation was created). If several such links exist, any one can be chosen. If none
exists, the algorithm terminates since the current solution must be optimal.

This approach requires, of course, that the current values of the dual
variables j and Ai be known. The values of these variables can be obtained for
a particular feasible solution by using Eq. [7.49a]. In other words, the values
of the dual variables are set so that c = #i + Aj for all links in the basis.
Starting with an arbitrary valuet of one of these dual variables (say, #P = 0),
all other values will be uniquely determined. Using this starting point, the

tAn arbitrary starting value can be used since only differences between costs and dual
variables values count.

_· -

193

Part III Extensions of User Equilibrium

DUAL

VARIABLES
rl .IAI

A 4 -2Reduced Costs: VARIABLE

I TO!I Il I I 7 Pl O
FRO' W t W
(OD 4 8 14

© -2 1'"'
I 7'~_L

A5 -7

.2'5

///\ (~ A6 2

1A3- 1 7 - 8

"A 7 -8

Figure 7.10 Step 2 of the algorithm. The values of the dual variables are shown
next to the nodes; the links shown are those not in the basis. The table depicts the
reduced costs, indicating that link 2- 4 (shown as a solid line) should enter the
basis.

value of the dual variables for the solution depicted in Figure 7.9 can be
determined by the following progression:

i.4 = -2
#2 = 5

1 = 0 ;l = 6 2 25 = - 7
3 = 1

17 = -8

The reduced costs can now be calculated for each empty link, as shown in
Figure 7.10. The reduced cost for link 2- 4 is negative and it should therefore
enter the basis. The identification of this "candidate" link ends step 2.

Step 3. The third step determines how much flow can be loaded on
the candidate link and which (currently loaded) link should be emptied (i.e.,
leave the basis). Both objectives are achieved by identifying a "closing chain"
in the network. A closing chain is an undirected sequence of links,: currently
in the basis, leading from the demand node to the supply node of the candi-
date link. Figure 7.11 demonstrates the closing chain based on candidate link
2 - 4. This closing chain includes node 2, node 6, node 3, and node 4.

To determine the amount of flow to be assigned to the candidate link, let
the links along the closing chain be flagged as follows. Start from the supply
node of the candidate link and traverse this link setting its flag to "T". Con-
tinue along the closing chain setting a link flag to "F" when going against the
link direction and to "T" when going with the link direction. In the example
shown in Figure 7.11, links 2-+ 4 and 3 - 6 are flagged "T" while links 3 - 4
and 2 - 6 are flagged "F".

The amount of flow to be assigned to the candidate link is the smallest
link flow of all the links with flag "F" included in the closing chain. In the
example shown in Figure 7.11, this amount is min {10, 100} = 10 flow units.

tIn other words, the closing chain is determined with no regard to the directionality of
each link.

194

Chap. 7 Trip Distribution and Traffic Assignment Models

2-* 4) and the flags on the closing chain %
links.

The link with the minimum flow (2-- 6 in this example) will be emptied and
leave the basis in the next step.

In order to identify a closing chain, note that the links in the basis
always form a special graph structure (known as a "spanning tree"), in which
there is a unique sequence of links connecting any two nodes (with no regard
to link directionality). Starting with an arbitrary "root" node, each node can
therefore be associated with a predecessor node. The list of predecessor nodes
is similar to the one used in the representation of minimum-path trees de-
scribed in conjunction with the shortest path algorithm in Section 6.4. Given a
basis, the list of predecessors can be created in a fashion similar to the compu-
tation of the dual variables in step 2. Starting, for example, with node 1, the
predecessor list for the basis shown in Figure 7.10 is the following:

Node 1 2 3 4 5 6 7

Predecessor Root 6 6 3 2 1 2

The values of the predecessor nodes and the dual variables can be determined
simultaneously by following the same progression.

Given the predecessor list, the closing chain resting on a given candidate
link, i-.j, is found by tracing back the predecessors from node i and from
node j until a common node is found.t In the example shown in Figure 7.11,
the common node (known as the "pivot" node) is node 6. The closing chain
includes all nodes traced from i and fromj up to the pivot node.

By the end of step 3, a closing chain has been identified, the amount of
flow to be reassigned has been determined, and the link leaving the basis has
been marked.

tThis tracing process can be expedited significantly by measuring the "depth" of each
node from the root, along the spanning tree. The depth measures the number of links that have to
be traversed to reach the node order consideration from the root. The usefulness of this pointer is
that it can be used to limit the search since the pivot node must lie in the same depth for both
branches of the spanning tree that are traced back.

_ __�_�___

195

n 711 rlnfn l,.. hn n t

Part III Extensions of User Equilibrium

Figure 7.12 Optimal solution of the
transportation problem example.

Step 4. In step 4 the flow is actually assigned to the candidate link
and all other flows are adjusted accordingly. By inspecting the example, the
reader can see that it is enough to adjust the flows only on the links in the
closing chain. This can be easily done by adding the amount of flow identified
in step 3 to all links flagged as "T" and subtracting this amount of flow from
all links flagged as "F".

In the example shown in Figure 7.11, 10 units of flow are added to link
2 - 4, subtracted from 3 - 4, added to 3 -- 6, and subtracted from 2 -46. The
new flow assignment is shown in Figure 7.12 with link 2- 6 not included in
the basis any more.

Note that only one link should leave the basis in step 4, even if the flow
adjustment process causes other links in the basis to carry no flow. This
ensures that the basis always includes I + J - 1 links.

1
0

V2' 3

l 3 ' 1

A4 -2

AS -5

)A6 2

A 7 - 6

Reduced costs:

(i) 4 4 16 12

Figure 7.13 Dual variables and reduced
, _ , ,:. 9 L,9 costs at the optimal solution point.

196

Chap. 7 Trip Distribution and Traffic Assignment Models

The last function executed in step 4 is the updating of the dual variables
values and the predecessor list. When step 4 is completed, step 2 is executed
again. Figure 7.13 shows the values of the dual variables and the reduced costs
associated with the basis shown in Figure 7.12. Since all the reduced costs are
positive, the algorithm terminates. The value of the objective function at opti-
mality is z(x*) = -330.

The algorithm, including some of the list-processing methods mentioned
in earlier footnotes, is extremely fast and efficient. It can be used to determine
the flows in a large network, including many thousands of links, in a fraction
of a second of computer time.

7.5 SUMMARY

This chapter examined the joint distribution/assignment problem where link
flows and O-D flows are determined simultaneously. The problem is different
from the variable-demand equilibrium assignment discussed in Chapter 6 in
that some restrictions are placed on the O-D flows.

The first two sections deal with joint distribution/assignment models for
which the total number of trips leaving each origin node is fixed and known.
Such models are known as singly constrained. Section 7.1 assumes that the
trips are distributed from each origin to the various destinations on the basis
of a user equilibrium criterion. Even though such a model is not realistic, it
serves to introduce the problem and the solution approach, and to motivate
the other models. Section 7.2 assumes that the O-D flows are determined by a
special trip distribution function. In both cases the basic network is assumed
to be in user equilibrium, and in both cases the problem can be solved by
using a fixed-demand equilibration algorithm based on a proper network
representation. The problem discussed in Section 7.2 can also be tackled with
an efficient two-phase model which is similar to the convex combinations
algorithm except that its descent direction is different.

Section 7.3 presents a formulation of a doubly constrained distribution
model. In this model, not only the total number of trips leaving each origin
node is known, but the total flow into each destination node is fixed and
known as well. The problem can be solved, again, with the convex combi-
nations algorithm. The direction finding step of this algorithm requires the
solution of Hitchcock's transportation problem, an algorithmic solution pro-
cedure to which is given in Section 7.4. In a fashion similar to the solution of
the singly constrained model, the direction-finding step of the doubly con-
strained model can be accomplished by a double-phase algorithm. Such an
algorithm would require the solution of a gravity model (instead of a Hitch-
cock transportation problem) at every iteration.

The choice between singly and doubly constrained formulations is a
modeling issue that is left for the analyst. This choice depends on the type of
questions for which the model is supposed to provide an answer. In a doubly

_ _·_·.__._· - - -

197

Part III Extensions of User Equilibrium

constrained model, the total number of trips attracted to each destination
should be predicted exogenously, while in a singly constrained model, this
number is one of the outputs of the analysis.

7.6 ANNOTATED REFERENCES

Most of the literature on the subject of the combined distribution/assignment
program focuses on the gravity and entropy distribution models. A review of
these types of models is given by Wilson (1970), who originally developed the
applications of the entropy concept to urban and regional planning problems.
The formulation of the combined distribution/assignment model was studied
by Bruynooghe (1968), Florian et al. (1975), and Evans (1976). The solution
approach given in Section 7.3 was used in a somewhat more general context
by Florian and Nguyen (1978), Safwat and Magnanti (1982), and LeBlanc and
Abdulaal (1982). The doubly constrained model formulation given in Section
7.3 and the double-stage solution algorithm were suggested by Evans (1976),
who proved convergence of this algorithm. Murchland (1969) suggested a
similar (double-stage) algorithm for the variable-demand problem and proved
its convergence.

The algorithm for solving Hitchcock's transportation problem given in
Section 7.4 is an adaptation of the simplex method for linear programming.
This algorithm can be found in any standard textbook on operations research
methods or network flows. For example, Wagner (1975) has a good discussion
at an introductory level on the topic whereas Glover et al. (1974) give a
network-oriented treatment to the problem, including implementation con-
sideration. The example used in explaining the algorithm is taken from Cedar
(1978).

7.7 PROBLEMS

7.1. Formulate a singly constrained UE-type distribution/assignment program with
M, = 0, V s. Compare to program [3.3] and comment on the differences between
the formulations.

7.2. (a) Find the UE-type equilibrium flow for the network shown in Figure 7.3. The
link performance functions are t = 3 + xI and t2 = 2x2 . Assume that
xI + x2 = 6 and Ml = M2 = 0.

(b) Find the equilibrium flows when the attraction of destination 1 (the top one)
is 3 travel-time units (i.e., Ml = 3, M 2 = 0).

7.3. Find the equilibrium flows in the example of Problem 7.2a if the flow distri-
bution follows a logit model with parameter y = 0.5. Then find the equilibrium if
the attraction of destination 1 is 3 time units (as in Problem 7.2b). Comment on
the differences between the solutions to this problem and the solutions of Prob-
lem 7.2. "

·_

198

Chap. 7 Trip Distribution and Traffic Assignment Models

Figure P7.1

7.4. Consider the network representation of the joint UE distribution/assignment
problem shown in Figure P7.1. In this augmented network there is only one
dummy "supernode" D. Each destination is connected to D by a dummy link
s -- D, the flow on which is q., = , q,, and the travel cost on which is -M,.
Show that if the flow between each origin r and node D is 0,, the UE solution of
this augmented network is equivalent to a joint UE distribution/assignment
solution for the basic network. Compare this formulation with the one depicted
in Figure 7.2.

7.5. (a) Write an equivalent minimization formulation for a UE-type distri-
bution/assignment problem where each destination, s, is associated with a
parking charge which can be expressed in time-unit equivalents as T. What
are the first-order conditions for this problem? Interpret these conditions
and the meaning of the dual variables.

(b) Assume that in addition to a parking charge, each destination is associated
with a fixed parking capacity (including on-street and in lots). How would
you model the problem now? Discuss the formulation of the equivalent
problem, including possible difficulties. Show the equivalent network repre-
sentation of the problem.

7.6. A trip generation model relates the number of trips originating at each centroid
node r, O,, to the level of service experienced by travelers out of this node. How
would you model a UE-based combined trip generation, distribution, and as-
signment problem? (Hint: The answer lies in a proper definition of the attraction
variables.) Can you think of an augmented network representation so that the
problem can be solved with a UE algorithm?

7.7. Assume that a logit trip distribution model is specified in terms of (constant)
attraction variables only. In other words,

eMs
qs = V, e ¥ r, s

m e

(a) Formulate an equivalent minimization program for the associated distri-
bution/assignment program.

(b) Describe an algorithmic solution procedure.
(c) Why not use this instead of the logit model given in Eq. [7.14]?

7.8. (a) Explain the mechanics of the direction-finding step associated with the ap-
plication of the convex combinations algorithm to the solution of the logit
distribution/assignment program. In other words, show how program [7.19]
is solved to obtain the auxiliary link and O-D flows.

_ ____ _ ___

199

Part III Extensions of User Equilibrium

(b) Outline the application of the convex combinations algorithm for this prob-
lem. In particular, pay attention to the initialization procedure and the
convergence test.

7.9. (a) Show that the UE problem over the extended network given in Figure 7.2
with the volume delay functions given by Eq. [7.22] is equivalent to a
distribution/assignment problem with logit distribution functions.

(b) Show that the UE conditions over this modified network are equivalent to
the equilibrium conditions for the logit distribution/assignment problem.

*7.10. Consider the double-stage algorithm discussed at the end of Section 7.2.
(a) Show that the auxiliary program solved in the direction-finding step (pro-

gram [7.28]) is convex.
(b) Show that the double-stage algorithm generates a descent direction for

program [7.15] at every iteration. [Hint: Show that Vz(x", q) . (y -x " ,
v" - q)T < 0 for z(.,) in [7.15a], where y" and v" are generated by the
direction-finding step of the double-stage algorithm. In other words, show
that

a ta(XaXY -x) + E In qn - M)(Vr. - qs)< 0

Use the facts that in program [7.28] i(y", v") - (x", q") < 0 if (x", q") is not
the optimum and that z(y, v) is convex.]

*7.11. Develop and outline a double-stage algorithm for solving the variable-demand
UE program discussed in Chapter 6. Develop the auxiliary program solved at
every iteration of the method; show that it is convex and that its solution is the
auxiliary flow pattern used to define the descent direction. Also show that the
search direction is, in fact, a descent direction.

7.12. Consider the problem

min z(x) = ,) dO

subject to

Zf[= qs t r, s
k

q = 0, V r
s

Y q,s = Ds Vs
r

fks0 V k, r,s

and the incidence relationships. How would you solve this problem? Does it
correspond to any kind of reasonable equilibrium conditions over a transpor-
tation network? Explain your answers.

7.13. Interpret the coefficients A, and Bs of the entropy model.

7.14. Derive the Lagrangian of program [7.38]. Show that the first-order conditions
of program [7.38] include the UE equations as well as Eq. [7.39a] which leads
to the entropy distribution model.

200

Chap. 7 Trip Distribution and Traffic Assignment Models

7.15. The doubly constrained distribution/assignment model (the equivalent mini-
mization of which is given in Eqs. [7.38]) can be solved by using the double-
stage algorithm.
(a) Describe the application of the double-stage algorithm to this problem in

detail.
(b) Show that the auxiliary program that has to be solved at each direction-

finding step is convex.
(c) Show that the objective function E ty + (1/C) _, (V, In v,. - v,.), when

minimized subject to constraints [7.38b] through [7.38e] (written in terms of
the appropriate auxiliary variables), results in the same solution as the pro-
cedure of finding unand minimizing Eq. [7.46].

(d) Suggest an algorithm for solving the program formulated in (c) (or for solv-
ing [7.46] subject to the appropriate constraints).

7.16. Consider a simple network, including two links connecting one O-D pair. The
following data is given:

t = 2.0 1 + 0.15()

t2 = 3.0 [1 + 0.15()]

72q= -- 1

(a) Use the convex combinations algorithm to solve for the equilibrium with
variable demand. Show the results of five iterations.

(b) Use the double-stage algorithm for the same problem. Show the calculations.
Compare the rate of convergence of both algorithms.

7.17. Formulate the equivalent minimization for a singly constrained entropy-based
distribution/assignment problem. What do you get?

7.18. Consider the application of the convex combinations method to the solution of
the doubly constrained distribution/assignment problem. Explain why the
number of destinations loaded from each origin at each iteration is, on the
average, two or higher.

7.19. Consider the following link choice mechanism in the initialization procedure for
the Hitchcock transportation problem: Choose supply nodes in numerical order
and examine the links emanating from each supply node in order of least cost.
(a) Write a flowchart of the initialization procedure with this link choice mecha-

nism.
(b) Apply this mechanism to the network example in Figure 7.6 to get an initial

feasible solution.
(c) Compare the objective function value at the initial solution obtained with

this procedure to that obtained with the penalty method. Comment on the
relative merits of the two procedures.

7.20. Consider the transportation problem example solved in Section 7.4. Interpret the
meaning of the dual variables values at the optimal solution.

_ __ ___· -a ~ ~ _

201

202 Part III Extensions of User Equilibrium

7.21. (For those who know linear programming) Show how the algorithm described in
Section 7.4 for solving the transportation problem corresponds to the simplex
method for solving LPs.

7.22. Use the algorithm described in Section 7.4 to solve a transportation problem
with the following parameters:

0,= 100 D = 75 c 14 = 3 c24 = 2 C34 =0

02 = 130 Ds = 125 c15 = 6 c25 = 12 c3 5 =4

03= 70 D6 = 100 c 1 6 = 5 c2 6 = 1 3 6 =2

I

The mathematical programming formulations presented up to this point in the
book assume that link performance functions are independent of each other.
In other words, it is assumed that the travel time on a given link depends only
on the flow through that link and not on the flow through any other link. This
assumption is not always valid. Cases where flow interaction cannot be ig-
nored include heavy traffic in two-way streets, unsignalized intersections, and
left-turning movements in signalized intersections. This chapter presents meth-
ods for finding equilibrium when the interactions of flows and travel times
across links are recognized explicitly.

Link interactions can be either symmetric or asymmetric. When the
interactions are symmetric, the marginal effect of one link flow, say x", on the
travel time on any other link, say t, is equal to the marginal effect of xb on t,.
In this case, the equilibrium flow pattern can be found by applying the equiva-
lent minimization approach utilized in the previous chapters. Section 8.1 pre-
sents this method through a special case of pairwise symmetric link intersec-
tions and then generalizes the results to any symmetric interaction pattern.

When the link interactions are asymmetric, there is no known equivalent
minimization program that can be used to find the equilibrium flow pattern.
Section 8.2 explains this case and outlines an algorithmic approach for finding
the equilibrium flow pattern under these conditions.

The focus of this chapter is on the standard (fixed-demand) UE model
presented in Chapter 3. The resulting methods are applicable to all other
models that can be solved as equivalent UE programs, using appropriately
modified networks.

203

._ ______~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I.

Equilibrium
with Link Interactions

Part III Extensions of User Equilibrium

8.1 TWO-WAY TRAFFIC INTERACTIONS

A simple case of link interaction involves pairwise relationships between the
two (opposite direction) links representing two-way streets.t As traffic builds
up in one direction, the delay to flow in the opposite direction increases due,
for example, to the reduction in passing opportunities. This effect can become
quite pronounced in moderate to heavy flow.

To model this interaction, let a' denote the link opposite to link a. [Since
the prime on a subscript represents the opposite link, link (a')' is link a itself.]
The performance function on link a is given by

ta = ta(Xa, Xa,) [8.1a]

and obviously,

ta, = ta,(xa,, xa) [8.lb]

The travel time in a given direction is considered to be a function of the flow
in both directions. This travel time, however, is assumed to be independent of
any other link flow in the network.

In the case of two-way traffic, the interaction between the opposite direc-
tion links can be assumed to be symmetric. This assumption means that the
effect of an additional flow unit along a particular link on travel time in the
opposing direction equals the effect of an additional flow unit in the opposing
direction on the travel time of the link under consideration. The symmetry
condition can be expressed mathematically as

ata(xa, Xa,) ata,(xa,, ,) Va [8.2]
aXa, OXa

The equilibrium flow pattern can be found in this case by solving the following
minimization program:

min z(x) = ta(, Xa,) dco + ta(c, 0) do) [8.3a]

subject to

f[,s = qrs V r, s [8.3b]
k

fI 2 O V k, r, s [8.3c]

The objective function [8.3a] includes two terms for each link in the network.
The first is the integral of the link's performance function, with respect to its
own flow, when the flow in the opposite direction is held constant. The second
term is the integral of the link's performance function when the flow on the

tThe analysis in this section applies to any pairwise symmetric link interaction pattern, not
only in two-way streets.

204

Chap. 8 Equilibrium with Link Interactions

opposite link is held at zero. The objective function is halved so that the scale
of the results will conform to the results of earlier chapters (this point is
explained below). This section investigates program [8.3], establishing the
equivalency between the solution of this program and the UE equations. It
also determines the conditions for the uniqueness of this solution and de-
scribes a convergent algorithm for solving this program. Finally, the two-way
traffic case is extended to general cases of symmetric link interactions.

Equivalency Conditions

The first-order conditions of program [8.3] involve the first derivatives
of the objective function. The derivative of z(x) with respect to the flow on a
particular link (say, link b) is computed by differentiating, in turn, each term in
Eq. [8.3a].

The derivative of the first sum in [8.3a] with respect to xb is given by

Oa Xb ab '
~- | - tb(o, Xb,) d) + a tb(, Xb) dw [8.4]

The derivative of all other terms in the sum will be zero. Expression [8.4]
includes two derivatives. The first one can be readily evaluated (by the funda-
mental theorem of calculus), that is,

aXJ tb(CO, Xb,) dco = tb(Xb, Xb,) [8.5]

The second term in Eq. [8.4] can be evaluated by moving the derivative inside
the integral (since Xb is independent of Xb,) and the remaining problem is to
evaluate

b' atb,(OW, Xb) do [8.6]

To get an expression that is easy to evaluate, the symmetry condition (Eq.
[8.2]) can be introduced into the integrand of Eq. [8.6], that is,

xb atb,(CO, Xb) dco atb(Xb,) do [8.7]
Xb aXb,

The integrand on the right-hand side of Eq. [8.7] cannot be taken out of the
integral sign, since the derivative is taken with respect to the boundary of the
integral. The integrand is then a function, and Eq. [8.7] has to be evaluated as
a definite integral, that is,

b(bXb) do = tb(Xb, Xb,) - tb(Xb, 0) [8.8]
JO a(aDXb,____.._~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--- - -

205

Part III Extensions of User Equilibrium

The results shown in expressions [8.5] and [8.8] can be substituted now in Eq.
[8.4] to give

ax [z Jta((o, xa) d] = 2tb(Xb, Xb,) - tb(Xb, 0) [8.9]

The derivative of the second term in objective function [8.3a] with re-
spect to Xb is the following:

Ia It(w, 0) do = tb(W0, 0) dco
aXb aXb

= tb(Xb, 0) [8.10]

Using the results shown in Eqs. [8.9] and [8.10], the derivative of the objective
function, z(x) in Eq. [8.3a], can be written as follows:

az(x) 1 [x,) dc +)
t(ro, x,.) do + t,(o, 0) do

aXb 2 aXb] a aj

[2 tb(xb, Xb,) - tb(Xb, 0) + tb(xb, 0)] = tb(Xb, Xb) [8.11]

Thus the derivative of the objective function with respect to the flow on a
particular link is the travel time on that link. This result is similar to the one
obtained in Chapter 3 for the standard UE program. The first-order con-
ditions can easily be derived from this result by repeating the derivation in
Eqs. [3.11] through [3.16]. These conditons are

(c[- Ur,)f s = 0 V k, r, s [8.12a]

C - 2> 0 V k, r, s [8.12b]

These first-order conditions mean that the flow pattern that minimizes pro-
gram [8.3] also satisfies the user-equilibrium conditions for a network with
two-way link interactions.

Two comments are in order here. First, the aforementioned conclusion is
true only if the interaction is symmetric, that is, if the marginal effect of xa on
ta, is equal to the marginal effect of xa on ta,, for every pair of links a and a'
representing opposite flow directions. (This condition was used explicitly in
Eq. [8.7] to derive the first-order conditions of program [8.3].) Furthermore, it
is assumed that no other link interactions exist. In this context, the symmetry
assumption may be plausible because of the symmetry of the physical phenom-
enon to which it is applied.

The second comment has to do with the derivation of the first-order
conditions in this section. This derivation highlights the nature of objective
function [8.3a] and of most of the equivalent mathematical programming
formulations presented in this text. These programs are carefully constructed
so that their first-order conditions yield the required equilibria. The first sum

206

Chap. 8 Equilibrium with Link Interactions

in Eq. [8.3a] parallels the UE objective function [3.3a]. The added sums are
used to cancel out the terms resulting from the lower bound of the integrals.
Such mathematical constructs are not generally based on any economic (or
other behavioral) theories, and should be viewed strictly as tools for solving
the equilibrium equations.

Uniqueness Conditions

The equivalent mathematical program given in Eqs. [8.3] has a unique
solution under the following conditions:

1. The travel time on a link is a strictly increasing function of the flow on
that link, that is,

at.x., xa)
Xa X) > O V a [8.13a]
cx.

2. An additional flow unit in a given direction will affect the travel time in
that direction more than it would affect the travel time in the opposite
direction. In other words,

at(x , x,,) ata,(x,, x
Xa, Xa) V a [8.13b]

Actual link performance functions tend to satisfy both of these conditions.
[Note that both ata(,)/xa and Ota,(,)/cx, are nonnegative for actual link
performance functions.]

Using these two conditions, it can now be shown that objective function
[8.3a] is strictly convex and therefore (since the constraint set is convex) that
its minimum is unique. Any one of the convexity criteria mentioned in Section
2.2 can be used for this purpose. In this case, it is relatively easy to use the
Hessian of z(x) [which is the matrix of second derivatives of z(x)]. Showing
that this Hessian is positive definite is sufficient for demonstrating that z(x) is
strictly convex.

To calculate the second derivatives of z(x), recall first that (from Eq.
[8.11]) the first derivative of z(x) with respect to the flow on link a is given by

z(x ta(xa, Xa,) [8.14]
axa

The second derivative, with respect to the flows on links a and b, is then given
by

ta(Xa, Xa) if b = a

/2Z(X) ta(Xa. Xa) t a,)
axaa ax, ax, if b = a' [8.15]

0 otherwise

- - _·_ ._ ___

207

Part III Extensions of User Equilibrium

Assume, now, that the network links are ordered so that each link is adjacent
to the link representing the opposite traffic movement. Given this order, the
Hessian of z(x), V2z(x), can be expressed ast

O V2,2,

V2z(x) = ' [8.16a]
a, a'

where

Ota ata,

Va, t_ a [8.16b]

aXal aXa'

The structure of the Hessian is "block diagonal," with each block given by the
2 x 2 matrix in Eq. [8.16b]. Each of these (symmetric) 2 x 2 matrices is posi-
tive definite if its diagonal entries and its determinant are positive.: To see
that this is the case with V2, a' in Eq. [8.16b], note first that

ata Ot,at, > 0 and -t > [8.17a]
axa axa,

due to assumption [8.13a]. Second, note that the determinant of each block
matrix is positive, that is,

Ota ata ,

a a a _ atat > [8.17b]
ata Oat, axaax , aXal aXa

aXa, OXa,

This inequality holds because of the second assumption (Eq. [8.13b]) on the
link performance functions. Thus, Hessian [8.16a] is a block diagonal matrix
in which each block is a positive-definite matrix. Such a Hessian is positive
definite, as can be shown by the reader (see Problem 8.4).

The objective function is thus strictly convex with respect to the link
flows and consequently, it can be concluded that program [8.3] has a unique
minimum. As was the case with the standard UE problem, the solution of this
program is not unique with respect to path flows, but only with respect to link
flows.

tIn Eq. [8.16a] 0 stands for a 2 x 2 matrix of zeros.
tIn Section 2.2 this condition was stated more generally, saying that a symmetric matrix is

positive definite if all the leading principal minors are positive.

··

208

Chap. 8 Equilibrium with Link Interactions

Algorithm

A number of algorithms can be used to minimize program [8.3]. The
convex combinations method is again particularly applicable to this problem
because the direction-finding step of this algorithm involves an all-or-nothing
assignment, which is relatively easy to implement and solve.

The linear program that has to be solved at the direction-finding step
involves the following objective function (see Eq. [8.14]):

min z"(y) = y, = E ty, [8.18]
ax i"' =

where t = t(x:, x,). This function should be minimized subject to the flow
conservation constraints (in y). The solution of this minimization program,
{ya}, which is found by a simple all-or-nothing assignment, is used to define a
descent direction. The optimal move size in this direction is a scalar, a, which
solves the following problem:

min z(a) = [tco, x, + (y, - x,)] do

a 0d+ E t,(co, 0) do [8.19]

This problem is no more difficult to solve than the original UE objective
function. All other algorithmic steps are similar to the ones described in Sec-
tion 5.2 for solving the standard UE program.

Program [8.3] is applicable to any paired and symmetric interaction
pattern. In other words, it holds whenever the travel time on a given link is a
function of the flow on that link, and a single additional link. The travel time
on that additional link is similarly influenced only by its own flow and the
flow on the aforementioned link. Furthermore, the travel time on these two
links is not influenced by the flow on any other link. This pair of links does
not necessarily have to represent opposite flow directions as long as the sym-
metry holds. The following example illustrates the equivalent minimization
approach for a simple equilibration problem of this type.

Example

Consider the simple three-link network depicted in Figure 8.1a. The
intersection between the streets represented by links 1 and 2 is illustrated in
Figure 8.lb. With this type of intersection, it can be expected that delays to
traffic on link 2 would be influenced by the flow on link 1, and vice versa. Due
to the geometry of the intersection, this interaction can be expected to be
symmetric.

· __

209

Part III Extensions of User Equilibrium

(a]

1

2

(b)

Figure 8.1 Network example with three
links and one O-D pair: (a) the network
representation; (b) the intersection repre-
sented by the middle node.

The link performance equations for this problem are the following:

t1 (xl, X2) = 2 + 3x1 + 2X2

t2(x 2 , x1) = 4 + 2X2 + 2x1

t3(x 3) = 3 + X3

[8.20a]

[8.20b]

[8.20c]

Assume further that there are 5 units of flow going from the origin to the
destination. In other words, the flow conservation constraint is x1 + x2 = 5
flow units.

In determining the equilibrium flows in this example, link 3 can be
dropped from the problem, since it is clear that x* = 5 and thus t3 (x*) = 8
time units. The problem that remains is to find the distribution of flow be-
tween link 1 and link 2. Assuming that both links will be used at equilibrium,
the solution to this example can be found by setting

tl(X 1, X2)= t2(X2, X1) [8.21]

Substituting x2 = 5 - x1 into the link performance functions [8.20a] and
[8.20b], Eq. [8.21] can be solved to obtain x = 2 flow units and, accordingly,
x* = 3 flow units, meaning that both links are, in fact, used at equilibrium.
The travel times at equilibrium are then

t1 (2, 3)= t2(3, 2) = 14

I I----l------·L ----r�----------.l- �__I.�L·----·L -- - II._; _-�I ��- ��

210

01*11'

Chap. 8 Equilibrium with Link Interactions

Before the equivalent minimization approach can be used for solving this
problem, the symmetry conditions should be verified. The equivalent mini-
mization approach is not valid if the link interaction pattern is not symmetric.
In this example,

at(x 1, x 2) at2(x2 , x1) = 2 [8.22]
ax2 axl

meaning that the link interaction is symmetric.
The equivalent mathematical program for this example is given by Eqs.

[8.3], as follows:

min z(xl, x 2, x3) = (2 + 3o + 2x2) do + I (4 + 2c + 2xI) dw

+ ½ (2 + 3co) dco + I (4 + 2co) dco + (3 + o) do [8.23a]

subject to

xl + x2 = 5 [8.23b]

X1 + X2 = X3 [8.23c]

x, x2 > 0 [8.23d]

The Hessian of the objective function is given by

V2z(x)= 2 2 0
0 10

which is positive definite. (Check it.) The solution of program [8.23] will
therefore be unique.

Note that because of constraint [8.23c], the last term of the objective
function can be dropped; it is a constant that does not affect the minimization.
After carrying out the integration, then, the objective function of program
[8.23] becomes

z(x1, x2) = ½(2x, + 2x22x + X2 + 2X1X2 + 2x + + 4 2 + 2)

Substitution of x2 = 5 - xI into this function and collection of terms results in

z(xl) = 2x1 + x2 + 2x1(5 - xl) + 4(5 - xl) + (5 - xl) 2

The minimum is found by differentiating and finding the root of the resulting
equation, that is, by setting

dz(xl)
= 2 + 3x1 + 2(5 - xl)- 2x1 - 4 - 2(5 - xl) = 0

dxq

This equation implies that x = 2 and consequently x = 3. I he solution of

_____··_

211

212 Part III Extensions of User Equilibrium

the minimization program is therefore the equilibrium flow pattern, as ex-
pected.

Extensions

As mentioned in the introduction of this chapter, interactions among
traffic flows can occur not only on two-way streets and between pairs of links
but in many other cases as well. The travel time on a particular link may
therefore be a function of the flow on several links, meaning that, in general,
ta = ta(..., a, ...), or t = ta(x). In cases where the link interaction pattern is
symmetric, the equilibrium problem can be formulated and solved by using the
equivalent minimization approach. The symmetry conditions on link interac-
tion can be stated mathematically as

ata(x) at,(x)
t(X) -tb() V a b [8.24]

Oxb aXa

a condition that is a generalization of Eq. [8.2]. Note that when no link
interaction exists, condition [8.24] holds as well since all these derivatives will
be zero.

Condition [8.24] can be stated as a requirement that the Jacobian matrix
of the link-travel-time vector be symmetric. The Jacobian (of a vector of scalar
functions) is formed by arranging the derivatives of all these functions, with
respect to all the arguments, in matrix form. Letting t(x) = (... , ta(), ...), the
Jacobian of t(x), which is denoted by Vt(x) or V, t,t includes the partial deriva-
tives of all the link travel times with respect to all link flows. In other words,

Vt =

Otx) Ot2(atx)

atl(x) at 2(X) ata(X)

ax 2 ax 2 OX2

at l (x) at 2(x) ata(x)

aOXa aXa OXa

[8.25]

Condition [8.24] means that this Jacobian is symmetric.
As mentioned above, in cases in which the symmetry condition holds, an

equivalent mathematical program, the solution of which satisfies the UE con-

tThe operator "del" (V) is used to denote the gradient vector, if it operates on a scalar
function. In cases in which V operates on a vector-valued function it represents the Jacobian of
this function.

_ _ __ __�_ �_· _ _ __ _

Chap. 8 Equilibrium with Link Interactions

ditions, can be found. The objective function of this program is given by z(x),
defined by the line integralt

z(x) = |t(o) dw [8.26]

The proof of this statement is given in the references mentioned in Section 8.4
(see also Problem 8.5). The Hessian of this objective function will be the
Jacobian in [8.25], implying that this objective function will have a unique
solution if the Jacobian is positive definite.

The conditions for having a unique equilibrium solution in the general
case of link interactions can be stated as an extension of the uniqueness
conditions for pairwise link interaction (see Eqs. [8.13]). These conditions are:

1. The travel time on each link is an increasing function of the flow on that
link, that is,

at.(x) > 0 V a [8.27a]
OXa

2. The main dependence of a link's travel time is on its own flow. In other
words, the derivative of t with respect to x is much larger than the
derivative of t with respect to the flow on any other link. This condition
can be stated analytically ast

ata(x) at,(x)>> ~ ba [8.27b]
ax, aXb

Equations [8.27] can be looked upon as conditions for the positive defi-
niteness of the link-travel-time Jacobian.

To illustrate the uniqueness issue, assume now that the performance
functions of links 1 and 2 in the aforementioned example (see Figure 8.1) are
given by

t1 (xl, x2) = 2 + 2x1 + 2x2 [8.28a]

t2(xl, x2) = 4 + 2x1 + x2 [8.28b]

instead of [8.20a] and [8.20b]. All the other data remain unchanged. In this
case, condition [8.27a] is met for both links, but condition [8.27b] is not
satisfied since, for example,

atl(Xl, X2) atl(Xl, X2)
-x1 Ax2 [8.29]

Ox, Ox2

tA line integral can be converted to a standard integral by expressing the integrand as a
function of a single parameter and then performing the integration along the path defined by that
parameter. As it turns out, if the Jacobian is symmetric, the line integral is independent of the
path of integration by Green's theorem.

tThe requirement, more precisely, is that at,8 /x, be larger than ,,, [at,/Oxb].

_ ·

213

Part III Extensions of User Equilibrium

Equation [8.29] implies that the Jacobian of [t(x), t2(x)] may not be positive
definite. The Jacobian is given by

V,t= 2 1 0 [8.30]

0 1

This matrix is not positive-definite since the determinant of the second minor
along the diagonal is negative, that is,

2 2= -2
21

The equilibrium flow pattern that solves this example is not unique. For
example, the solution xl = 0 and x2 = 5 is an equilibrium flow pattern since,
t' = 12 and t = 9; the travel time on the unused path is higher than the
travel time on the used path, meaning that the UE conditions are satisfied.
Similarly, xl = 5 and x2 = 0 is another equilibrium solution with t = 12 and
t = 14. Thus, there are at least two equilibrium flow patterns in this case.
This example then demonstrates the existence of multiple equilibria in cases
where the Jacobian is not positive definite (even though it may be symmetric).

As this example implies, there may be situations in which the equilibrium
flow pattern is not unique. Such situations may require a reformulation of the
model or a substitution of a model with lesser interactions. It should be noted,
though, that the uniqueness conditions are frequently satisfied. Furthermore,
even in cases where, for example, Eq. [8.27b] is violated, the violation is such
that the solution may be unique anyway.

The next section examines cases in which the symmetry condition does
not hold and consequently, no equivalent minimization program exists.

8.2 EQUILIBRIUM
WITH ASYMMETRIC COST FUNCTIONS

This section addresses the question of finding the equilibrium flow pattern in a
transportation network in which link performance is a function of the flows on
several (and possibly all) links in the network. The problem addressed here is
more general than the one discussed in the preceding section, in that the
pattern of link interactions is not assumed to be symmetric. This is reflected in
the link-travel-time Jacobian, which is assumed to be asymmetric. As men-
tioned before, in this case there is no known mathematical program the solu-
tion of which is the equilibrium flow pattern. The focus of this section is
therefore on direct solution algorithms rather than on a mathematical pro-
gramming formulation. These algorithms, however, are intimately related to
the minimization algorithms used throughout this text. It should be noted that
the following analysis still requires that the link-travel-time Jacobian be posi-

_ ____ __ __ ___ I _1_ �__ _ _ _ I________ I_

214

Chap. 8 Equilibrium with Link Interactions

tive definitet (although not symmetric). If this requirement is not met, the
problem may not have a unique equilibrium solution, as illustrated in the last
part of Secton 8.1.

Algorithm

The equilibration algorithm presented here is based on solving a series of
standard UE programs. Each iteration of this procedure requires the solution
of one such program.

Assume that, at the nth iteration of the procedure, the values of all the
link flow variables (xl, ... , x') are known. At this point, the following math-
ematical program can be formulated:

min (x) t= E x | t a(x 1 , , X , x,) dco [8.31a]

subject to

Zf, = qrs V k, r, s [8.31b]
k

f' 2 0 V k, r, s [8.31c]

This program is later referred to as the "subproblem." It is a standard UE
equivalent minimization. The objective function includes only simple link per-
formance functions in one argument each (i.e., t is a function of Xa only); all
other flows that may affect link a are fixed at their values during the nth
iteration. This formulation does not fix the flows themselves, only their cross-
link effects. Accordingly, the subproblem is also known as the "diagonalized"
problem (the Hessian of [8.31a] is diagonal since all cross-link effects have
been fixed).

To simplify the notation used in the following discussion, let t(xa) denote
the performance function for link a when all arguments of ta(-), other than xa,
are fixed at their values during the nth iteration. In other words,

ia(xa) = ta(X' -...- _, x a, x+, ..., x)
The general process of finding the equilibrium flows requires the following
steps:

Step 0: Initialization. Find a feasible link-flow vector x". Set n = 0.

Step 1: Diagonalization. Solve subproblem [8.31] by using any UE
minimization method. This yields a link-flow vector x" + 1.

Step 2: Convergence Test. If x" - x"+ , stop. If not, set n:= n + 1, and
go to step 1.

tNote that positive definiteness cannot be proven for asymmetric matrices by using the
leading minor determinant or the eigenvalues rules. These can be used only for symmetric
matrices.

__·_____ ·-

215

Part III Extensions of User Equilibrium

The convergence test required in step 2 of the algorithm can be based on
the maximum difference in link flow between successive solutions or on any
other criterion measuring the similarity of x and x"+. For example, the
algorithm can be terminated if

1 Ixa -x IX
A x"+l _<
a x a

[8.32]

where A is the number of links in the network and K is a (dimensionless)
predetermined constant.

As the algorithm described above does not attempt to minimize any
global objective function, it is not evident that it will result in the desired
solution. The proof that this algorithm, at convergence, produces the equilibri-
um flow pattern is given below.

Proof of Solutiont

The following arguments prove that, in the aforementioned procedure,
xn = xn+ 1 if and only if Xn is a vector of flows that satisfies the UE conditions.
The proof of any such statement has two parts. First, the "if" part (the suf-
ficiency condition), which states that if x = x"+1, then xn is an equilibrium
flow vector. The second part is the "only if" statement (the necessity con-
dition), which means that x" = x"+ only if xn is an equilibrium flow pattern.
Another way to state this condition is to treat it as a proof that if x" is an
equilibrium flow pattern, then x" = x" + . Proving both parts of the statement
will demonstrate that (x" = x"+) is a necessary and sufficient condition for x"
to be an equilibrium flow vector.

To prove that if xn = x" + 1, then x" is an equilibrium solution, consider
the first-order conditions of program [8.31] (the subproblem):

i. x. (x:+I')5b' s n > =0(E a(Xa -ak -U1 S k - UsE a(Xa a, A-rs>°

V k, r, s

V k, r, s

[8.33a]

[8.33b]

where t(x+) = ta(x, ... x" , x +1, xa,..., xA) and u. is the value of the
dual variable associated with the flow conservation constraint [8.31b] at
the solution of program [8.31]. Note that Ea t(X +),isk is not equal to
C s"+1 [which equals Ea ta(x"+l)S k]J, nor does it equal c" [which equals
la ta(x) k]. Equations [8.33] therefore do not represent any equilibrium
condition.

If, however, the convergence criterion in step 2 above is met,
Xn+1 = XXa - a Va [8.34]

tThe reader may skip this proof without loss of continuity.

i �____� ____ I __ _ ___ _·I

216

Chap. 8 Equilibrium with Link Interactions 217

In this case x can be substituted for x+1 in Eqs. [8.33] (and f". can be
substituted forf s" +) to give

n(xn)rs n)frsn = 0 V k, r, s [8.35a]

E t.(x)65k - u 2 0 V k, r, s [8.35b]
a

Now, note that

ta(xa) = ta(X")= ta

and

t a, k = Cks

Equations [8.35a] and [8.35b] can thus be rewritten in terms of path-flow
variables to state

(Crsn - rsn = 0 V k, r, s [8.36a]

cn -urs O V k, r, s [8.36b]

Equations [8.36] imply that x" is an equilibrium flow vector and that the
sufficient condition is thus met; if x" = x" + 1, then x" is a UE flow vector.

To prove the necessity condition, assume that x" is an equilibrium flow
vector, that is, it satisfies Eqs. [8.36] (in the sense that the path travel times,
{ck"}, which are based on x" satisfy these equations). This means that x" also
satisfies Eqs. [8.33]. This statement does not negate the fact that, when pro-
gram [8.31] is solved in step 1 of the aforementioned algorithm, there is a
unique set of link flows, namely x" +, which minimizes the program. This set
of flows, obviously, satisfies the first-order conditions given for this program in
Eqs. [8.33]. Thus both x" and x"+ ' satisfy Eqs. [8.33], which have a unique
solution (since the link-travel-time Jacobian was assumed to be positive defi-
nite). It therefore must be true that (if x" is an equilibrium flow vector, then)
x" = x"+* . This completes the proof.

It should be noted that this is not a proof of convergence, but rather a
proof that if the algorithm converges, its solution is the equilibrium flow
pattern. The algorithm can be proven to converge in cases where the Jacobian
of the link-travel-time function is positive definite. That proof, however, is
beyond the scope of this text and is referred to in Section 8.4.

The algorithm is known as the diagonalization method, since the Jacobi-
an of the subproblem [8.31] is made to be diagonal by fixing the cross-link
interactions at a given flow level. The following example illustrates how the
diagonalization procedure converges to the equilibrium solution.

__ I_ I _____ �__I_I__ _

Part III Extensions of User Equilibrium

Link 1

Figure 8.2 Network example with two
Link 2 links and one O-D pair.

Example

Consider the simple two-link network example depicted in Figure 8.2,
with the following link performance functions:

t = 2 + 4xI +x 2 [8.37a]

t2 = 4 + 3x2 + 2x1 [8.37b]

The total O-D flow is 5 flow units, that is,

x1 + x2 = 5 [8.37c]

The equilibrium solution of this system can be determined analytically by
solving Eqs. [8.37] directly. Assuming that both links are used at equilibrium,
the equilibrium condition is

t l (x 1, x 2) = t2(x1, x 2)

The resulting equilibrium solution is then x* = 3 and x = 2, with t* = t* =
16. The equivalent mathematical programming approach to this problem
cannot be used since the symmetry condition does not hold. The Jacobian of
the link-travel-time function is the following asymmetric (though positive-
definite) matrix

@at, a t,

x1 Ox 2 (4 1 [8.38]
at2 t2 \2 32

x X2 /
The problem can be solved, however, by using the diagonalization algorithm
described in this section.

To apply this algorithm, an initial feasible solution is needed.t Assume
that this solution is

x° =0

x°= 5

Furthermore, assume that the convergence criterion is based on the relative
change in the flow (i.e., if maxa {I x + I - " I/x} < K, stop) and that c = 0.01

tAn initial feasible solution may be obtained, for example, by applying an all-or-nothing
assignment on the basis of free-flow travel times, as mentioned in connection with the standard
UE case.

II

218

Chap. 8 Equilibrium with Link Interactions

(or 1%). The algorithmic iterations can be described then as follows:

First iteration:

Step 1: Diagonalization. Solve the subproblem:

min z(x1 , x 2) = o(2 + 4 + 5) do + (4 + 3) dco

subject to

xl + x2 = 5

X1 , X2 > 0

This program can be solved by integrating the objective function, substituting
the flow conservation constraint, differentiating, and finding the root of the
resulting derivative. The solution of step 1 ist

x = 3.86

x = 1.14

Step 2: Convergence Test. Compare

51
or

(xl -x°) 3.86-0max x = - o
a 0Xa 0

The convergence criterion is not met.

Second iteration:

Step 1: Diagonalization. Solve the subproblem

min z(x, x) = (2 + 4+ 4 1.14) dw + J(4 + 3 + 7.72) dw

subject to

x1 + x 2 = 5

x1 , x 2 > 0

The solution is

x 2 = 3.37

x 2 = 1.63

:More accurately, the solution shown below is xl = 3.857143.

_ ._____

219

Part III Extensions of User Equilibrium

TABLE 8.1 Iterations of the Diagonalization Procedure for the Network in Figure 8.2

Iteration xl x max100% max { } x 100%

0 0 5 - 100.00
1 3.857 1.143 0o 42.85
2 3.367 1.633 42.87 18.35
3 3.157 1.843 12.86 7.85
4 3.067 1.933 4.88 3.35
5 3.029 1.971 1.97 1.45
6 3.012 1.988 0.86 0.60
7 3.005 1.995 0.35 0.25
8 3.002 1.998 0.15 0.10
9 3.001 1.999 0.05 0.05

10 3.000 2.000 0.03 0.00

Step 2: Convergence Test. Compare

xl' /3.86 fx2 3 3.3 7'

(x2) =(11) (x9 (x, 1.14 x 2 1.63]
or

max = 63 -1 .14 = 0.43

The convergence criterion is not met.

A summary of 10 algorithmic iterations is shown in Table 8.1. This table
displays the iteration number, the solution of the subproblem (i.e., the diago-
nalized UE program), and two convergence measures. The fourth column
shows the convergence measure mentioned above, and the fifth column depicts
the convergence relative to the actual equilibrium solution which was found
analytically. In field applications the last measure is not available, of course,
but in this example it shows the actual convergence rate of the procedure.

As the table indicates, the algorithm indeed converges to the correct
equilibrium solution. Furthermore, this convergence is relatively rapid. The
convergence criterion is met at the sixth iteration, where the convergence
measure is 0.86%.

Convergence Considerations
and a Streamlined Algorithm

Figure 8.3 depicts the convergence pattern as illustrated by the conver-
gence measure, and the actual convergence itself. Both measures show a mono-
tonic and asymptotic convergence rate. In other words, the convergence mea-
sure decreases with every iteration, and the marginal contribution of each
successive iteration is decreasing. This convergence pattern is similar to the

- --- ----- --- · --- -- ---- ---

220

Chap. 8 Equilibrium with Link Interactions

0/

Relative

differenc

1

1

1

1

1

Number of

Iterations

Figure 8.3 Convergence measure and actual convergence (with respect to the
known solution) as a function of the number of iterations of the diagonalization
algorithm.

convergence pattern of the convex combinations algorithm when it is applied
to the solution of the UE minimization program.

The convergence pattern depicted in Figure 8.3 is typical of the diago-
nalization algorithm and it holds for larger networks as well. This algorithm
requires, however, significant computational effort, since each iteration in-
volves the solution of a full-scale UE program (the subproblem). In the exam-
ple given above, these intermediate UE subproblems were solved analytically.
When the diagonalization method is applied to larger networks, however, the
subproblems have to be solved iteratively. A crucial question with regard to
the applicability of the entire approach is the accuracy with which these sub-
problems have to be solved.

Before the applicability question is addressed, however, the question of
validity should be raised. The proof that the algorithm generates an equilibri-
um solution assumes that the subproblems are solved accurately. This proof
may not apply when the subproblems are solved only approximately. Both the
validity and the applicability questions can be better addressed in the context
of the following considerations:

1. The proof that the diagonalization algorithm converges to the equilibri-
um solution holds if the convergence criterion (x"+ - x") is met, regard-
less of how x" was obtained. In fact, the aforementioned proof is based

_I _II _ _ ____~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _

221

Part III Extensions of User Equilibrium

only on the last iteration of the diagonalization algorithm (i.e., only x" +

has to be obtained accurately).
2. All the subproblems are subject to the same set of constraints. This

means that the optimal solution as well as every intermediate solution of
any subproblem is feasible for any other subproblem. Thus x" is a feasi-
ble solution for the (n +)th subproblem.

3. The convergence pattern of the subproblem solution procedure (when
using the convex combination method) is similar to the convergence
pattern of the solution procedure to the entire problem (when using the
diagonalization algorithm). In fact, it was demonstrated in Chapter 5
that the convex combinations algorithm converges asymptotically and
thus the criterion of similarity between consecutive flow patterns is a
valid one for the solution of the UE program itself.

These points suggest that the algorithm will be valid even if the subproblems
are solved only crudely at each iteration. Furthermore, such a crude solution
may enhance the computational efficiency of the entire approach.

Consider a diagonalization algorithm in which each subproblem is
solved only approximately by performing only a few iterations of the convex
combinations algorithm. The resulting (approximate) solution of each sub-
problem can, however, be used to initialize the next subproblem (in light of
consideration 2). Typically, it can be expected that the similarity between
consecutive subproblems (and their approximate solutions) will increase as the
algorithm proceeds. The use of the solution of each subproblem to initialize
the next one would then cause the initial solution to each subproblem to
improve as the algorithm proceeds. Thus, even if the subproblems are to be
solved accurately, the computational effort required will decrease as the algo-
rithm proceeds. This was illustrated by the sequence of solutions shown in
Table 8.1 for the example given above. As the flow pattern stabilized, the
consecutive subproblems have grown in similarity. If the same computational
effort is used to solve each subproblem (e.g., a fixed number of convex combi-
nations iterations), the accuracy of the solution to each subproblem will im-
prove as the algorithm proceeds. The last subproblem will invariably be solved
with high accuracy (since it is initialized with an accurate solution) and conse-
quently the proof that the algorithm actually determines the equilibrium flow
pattern holds (see consideration 1). Consideration 3 lays the ground for a
streamlined diagonalization algorithm in which the subproblems are solved by
using only one iteration of the convex combinations algorithm. In other
words, the solution of each subproblem is obtained by using only a single
all-or-nothing assignment. The streamlined algorithm includes the following
general steps:

Step 0: Initialization. Find a feasible link-flow pattern vector, x". Set
n:= 0.

___ _I I

222

Chap. 8 Equilibrium with Link Interactions

Step 1: Diagonalization. Perform one iteration of the convex combi-
nations algorithm on the diagonalized subproblem, using x as the initial
solution. This yields a link-flow pattern x"+ 1.

Step 2: Convergence test. If x" +- x", stop. If not, set n = n + 1 and
go to step 1.

When the convergence criterion is met, it is met both for the last subproblem
and for the diagonalization algorithm as a whole.

The streamlined algorithm can be written in detail by spelling out the
diagonalization step. The algorithm is then given by:

Step 0: Initialization. Set n =O. Find a feasible link-flow pattern
vector x".

Step 1: Travel-time update. Set t = t(x'), a.

Step 2: Direction finding. Assign the O-D flows, {q,,)}, to the network
using the all-or-nothing approach based on {tn}. This yields a link-flow pattern

Step 3: Move-size determination. Find a scalar, a, which solves the
following program:

x'x + 0: - x:))

min z(a) = J t(x, ..., . 1, 0, Xa+, ..., x~) dco

subject to

0<oca< 1

Step 4: Updating. Set xa":= x + c,(yx - x), V a.

Step 5: Convergence test. If xa"+l - xa, V a, stop. The solution is x"n+
Otherwise, set n := n + 1 and go to step 1.

This algorithm is similar to the convex combinations algorithm used in Sec-
tion 5.2 to solve the UE program. The only difference here is that the travel
time on each link is updated based on the entire flow pattern, since ta = t(x)
rather than ta = ta(xa). The diagonalization principle is reflected in the compu-
tation of the step size, a,, where each link is treated as if its travel time varied
only with its own flow. The flow on all other links is assumed fixed at x" for
this purpose.

The mechanics of this streamlined algorithm and its convergence pattern
are illustrated below for the two-link example of Figure 8.2. This example is
then used to compare the two algorithms to each other.

_ · ___ __

223

Part III Extensions of User Equilibrium

Example and Comparison of Algorithms

As before, the link performance functions for the network depicted in
Figure 8.2 are

t, = 2 + 4x, + x2

t2 = 4 + 3x2 + 2x1

and the flow conservation condition is given by x1 + x2 = 5. Starting with the
initial solution xl = 0 and x2 = 5, the algorithmic iterations are as follows:

First iteration:

Step 1: t = 7; t = 19.

Step 2: Since t < t, yO = 5 and Y2 = 0.

Step 3:t
5+ a(- 5)

+ 4co) dco + | (4 + 3o) dco

The solution is oo = 0.343.

Step 4: xl = 1.7; x2 = 3.3.

Step 5: Go to step 1.

Second iteration:

Step 1: t = 12.1; t = 17.3.

Step 2: Since t1 < t2, y = 5 and y2 = 0.

Step 3:

min
o0 < Jo

(5.3 + 4cw) dco + ' + '(7.4 + 3co) do
Jo

resulting in al = 0.224

Step 4: x = 2.5; x2 = 2.5.

Step 5: Go to step 1.

A summary of 10 algorithmic iterations is shown in Table 8.2.

tStep 3 can be solved analytically by performing the integration and then differentiating
and finding the root (with respect to a) of the resulting expression. In this case, after using the flow
conservation equation, the result is (as the reader can check) a, = (12 - 4x)/7 (y: - x).

_ �___ �_ __

224

min (
0 --c~ a <-

Q(0 im Or dN 0 N N e, _

o 't 0 O _ 000

00N ' O000

llm q ooC v 66N~6oooo
o r - -o ON 0 o C -

~o NON N O_ oooo O

_ 4 _, _q _4 _, _ __O '4 m 0 ON ON O N ON N

X ON o ON N_ - ,l N ONOI o X oo N ON 0OI °csfsstbiO O O ° °

m N(c cl mo 9

O l rJ o 8 8F-N Fo

c; o v, oO0 > h0 o Q
Ot ch N G(ci cti or o

oO t1 t VX 00Ch

01Nm~~~~~-

225

E

bE
.c0ot

o
.W

'I;
-N

obEu

I

..
0

o

C

C

22
(.

0EE

x'A0ei

8

I*,
X

XX

x

E

8
x

x
I . B

_ X

x
C

o

0p-

I I _ I _ _ _ - - j

Part III Extensions of User Equilibrium

Convergence [0/1

of

Figure 8.4 Convergence rates for the streamlined and the original diagonalization
algorithm as a function of the number of iterations.

Figure 8.4 compares the actual convergence patterns of the original diag-
onalization procedure and the streamlined algorithm for the example given
here. The convergence rate of both procedures seems to be similar in terms of
the number of iterations required for convergence. It could be even concluded
from this figure that the original algorithm is faster. This conclusion, however,
would be erroneous since the relevant basis for comparison should be the
computational effort required, not the total number of iterations. The original
algorithm requires several all-or-nothing assignments at each iteration,
whereas the streamlined algorithm requires only one such assignment at each
iteration. The original algorithm would thus be significantly slower in terms of
convergence per unit of computational effort. In large networks, the compu-
tational effort is directly related to the number of shortest-path computations,
or the number of all-or-nothing assignments required. Figure 8.5 compares the
convergence rate of both algorithms assuming that the original algorithm
requires, on the average, three all-or-nothing assignments to solve each sub-
problem. The basis of comparison thus becomes the actual convergence after a
given number of all-or-nothing assignments. The reader can appreciate, based
on this figure, how much faster the streamlined algorithm is for this example.
Limited experience suggests that the streamlined algorithm performs signifi-
cantly better than the original diagonalization method in large networks as

_ ___I �_� ___ � I�_��___ � ____I _·_ __ ___I

226

Chap. 8 Equilibrium with Link Interactions

[%0/o

ORIGINAL
ALGORITHM

Number of All-or-Nothing Assignments

Figure 85 Convergence rates for the streamlined and the original diagonalization
algorithm as a function of the computational effort. (The figure assumes that each
subproblem requires an average of three all-or-nothing assignments to solve.)

well, implying that only one all-or-nothing iteration should be performed for
each subproblem.

The streamlined diagonalization method is easy to implement. Existing
codes for solving the standard UE program can easily be modified to perform
the streamlined algorithms (given the appropriate performance functions).

8.3 SUMMARY

Chapter 8 has extended the framework of the equilibrium analysis to include
cases in which travel time over a link depends on the flow on the link as well
as on the flow on other links. The independence assumption used to develop
the equivalent mathematical programming approach in Chapter 3 may not be
justified in some instances encountered in everyday traffic conditions. For
example, two-way streets, intersections, merging movements, and turning
movements constitute instances in which the delay on a given link may be

_ · ___

227

Part III Extensions of User Equilibrium

influenced by the flow on several other links. Thus, in general, the link-travel-
time function is given by ta = t(x).

This chapter distinguishes two cases of link interdependence. In the first
case, the link interaction pattern is assumed to be symmetric. In other words,
the marginal effect of the flow along a given link, on the travel time of another
is equal to the marginal effect of the flow through the latter link, on the travel
time along the link under study. This condition can be expressed in terms of a
requirement that the Jacobian matrix of the link-travel-time vector be sym-
metric. If the symmetry condition holds, the equilibration problem can be
formulated as a mathematical program. Furthermore, if the Jacobian is posi-
tive definite, this program will have a unique solution. The equivalent math-
ematical program can be solved with any minimization algorithm, such as the
convex combinations method.

The second case analyzed in this chapter is one in which the link interac-
tion pattern is asymmetric. (The Jacobian is still required to be positive defi-
nite, however, to ensure uniqueness of the solution.) In this case, no equivalent
minimization program can be formulated and no minimization algorithm can
be applied to the problem. Section 8.2 suggests two algorithmic approaches to
the solution of the equilibration problem under these circumstances.

The first approach is an algorithm based on an iterative diagonalization
procedure, where each iteration requires the solution of a full-scale standard
UE program. The algorithm converges when successive solutions are similar.
The other approach is a streamlined version of the first one; it calls for a single
iteration of the UE solution procedure to be performed at every iteration of
the diagonalization procedure. Both algorithms are illustrated for a small
network example. The streamlined version is the more efficient one and should
be preferred.

8.4 ANNOTATED REFERENCES

The material in Chapter 8 follows a paper by Abdulaal and LeBlanc (1979).
These authors developed a methodology for solving joint modal split/traffic
assignment problems, which was adapted to the two-way traffic case analyzed
in Section 8.1. Dafermos (1971) had suggested a model similar to the one
presented in Section 8.1 for two-way traffic. Her approach starts from the
general statement of the objective function (Eq. [8.26]) to develop specific
models. This work includes a discussion of the existence, uniqueness, and
stability of the equilibrium flow pattern.

For the case of asymmetric link interactions given in Section 8.2, this
chapter again follows the algorithmic approach of Abdulaal and LeBlanc
(1979). Instead of applying it to binary interactions between cars and buses,
the approach is generalized to a full interaction pattern among the network
links. The approach is then extended with the presentation of the streamlined
algorithm in that section.

228

Chap. 8 Equilibrium with Link Interactions

A large part of the recent work on the subject is centered around the
formulation of the equilibrium conditions as variational inequalities. Using
this formulation, Smith (1979) demonstrated the existence and uniqueness of
traffic equilibrium when the Jacobian of the link-travel-time function is posi-
tive definite. Other proofs were suggested by Dafermos (1980), and Aashtiani
and Magnanti (1981). Both these references include solution algorithms. The
diagonalization algorithm was tested by Fisk and Nguyen (1982) in conjunc-
tion with the tests of several solution algorithms for this problem. These
authors concluded that the diagonalization procedure outlined in Section 8.2
is the most efficient approach to the problem. This procedure has been em-
bedded in the SATURN Transportation Planning Package developed by Bol-
land et al. (1979). A series of tests carried out by Nagurny (1983) was less
conclusive. The diagonalization algorithm was fou d to be the most efficient
only for some networks. All the tests mentioned aove, however, did not use
the streamlined version of the diagonalization method. A formal proof of
convergence for the diagonalization algorithms was given by Dafermos (1982)
and (for a somewhat restricted case) by Florian (1981). Some of these authors
refer to this algorithm as the "relaxation" method.

8.5 PROBLEMS

8.1. Discuss the applicability of the assumption of independence among links in
various cases, including freeway traffic, signalized and unsignalized intersections,
traffic activated signals, two-way traffic, turning movements, and so on. In each
case comment on the possibility of the interaction being symmetric.

8.2. Show that the standard UE equivalent minimization (Eqs. [3.3]) is not applicable
when link interactions exist. Use the two-way-traffic case to illustrate your point.

8.3. The objective function of the equivalent minimization associated with the two-
way interaction equilibrium problem includes the constant ½ in the objective
function (see Eq. [8.3a]). How will the program change if this constant is re-
moved? Will it still be an equivalent minimization program for the equilibrium
under consideration? Explain.

8.4. (a) Prove that the Hessian [8.16a] is positive definite if each block matrix [8.16b]
is positive definite.

*(b) Prove that the Jacobian [8.25] is positive definite if the main dependence
characteristic [8.27b] holds.

8.5. (a) Show that the objective function for the pairwise interaction case (Eq. [8.3a])
can be derived as a special case of the line integral in Eq. [8.26].

*(b) Show that if the link-travel-time Jacobian is symmetric, objective function
[8.26] can be used to derive an equivalent minimization for the UE problem
with link interactions.

8.6. Write out in detail the diagonalization algorithm given at the beginning of Sec-
tion 8.2 for solving for equilibrium with asymmetric cost functions. Assume that
the solution of each subproblem is based on the convex combinations algorithms.

_ _ __·___·___ ___

229

Part III Extensions of User Equilibrium

8.7. Consider the example in Figure 8.1 and assume the following data:

tl(xl, x 2) = 3 + 2x 2 + 2x2

t,(xI, X2) = 15 + x2 + 2x,

t3(x 3) = 20 + x3

x1 + x 2 = 5

(a) Derive the equilibrium solution by solving the UE conditions analytically.
(b) Show that the problem is symmetric. Formulate the associated equivalent

minimization program. Solve this program and check that the solution is
similar to the one you obtained in part (a).

(c) Does the problem have a unique solution? Analyze this point in detail.

8.8. Apply the convex combinations algorithm to the solution of the example given at
the end of Section 8.1 (see Eq. [8.20] and the related description). Start with the
initial solution x1 = 0, x2 = 5, x 3 = 5. Set a reasonable convergence criterion and
explain it. Tabulate the intermediate solutions and all the intermediate quantities
used in the iterative process.

8.9. (a) Suggest an intuitive explanation of why the streamlined algorithm is more
efficient than the original diagonalization algorithm in solving for equilibrium
with asymmetric travel-time functions. Based on your arguments, do you
expect the relationships between these algorithms to hold true for large net-
works?

(b) In the original diagonalization, the equilibrium solution to one subproblem
can be used to initialize the next one. As these subproblems grow in similarity
it can be expected that the last subproblems would need very few iterations to
converge while the first ones would need many all-or-nothing assignments.
What is the effect of this phenomenon on the convergence rate of the original
algorithm compared with the streamlined one?

8.10. Can the streamlined diagonalization algorithm be applied to an equilibrium
problem with symmetric travel-time functions? Compare such an application to
the application of the convex combinations algorithm to the solution of the
appropriate equivalent minimization.

8.11. Describe the modifications to a standard UE convex combinations code that have
to be implemented in order for it to perform:
(a) The diagonalization algorithm.
(b) The streamlined algorithm.

8.12. Consider a simple network comprising one O-D pair connected by two links. Let
the data for this problem be

= 3.0[1 + 0.15(8 ()] + 12

xI + x2 = 20

Solve this program using the streamlined diagonalization algorithm. Use a con-
vergence criterion of 0.10 and show the results of all intermediate iterations. Use
x = (20, 0) as an initial solution.

230

Supernetworks--
Models of Joint Travel Choices

This chapter combines the various problems and algorithms presented in the
preceding three chapters into a unified framework. It examines the four basic
dimensions of travel choice modeled in the traditional urban transportation
planning process: whether to take a trip, by which mode, to what destination,
and by which route. These four dimensions can be modeled in a unified
manner by formulating an equilibrium model with variable demand and joint
modal split, trip distribution, and traffic assignment components.

The combined problems discussed in this chapter are formulated and
solved using a modified network representation in a manner similar to the
formulation of the modal split/traffic assignment problem and the distri-
bution/assignment problem, in Chapters 6 and 7. In other words, the basic
network is augmented with virtual (dummy) links to represent several choice
dimensions. Such augmented networks are refered to in here as supernetworks.
The modified networks used to convert the joint mode split/traffic assignment
problems in Section 6.4 into equivalent UE programs, are, special cases of
supernetworks according to this definition. Similarly, the networks used to
convert distribution/assignment problems into equivalent UE problems in Sec-
tion 7.2 are also special cases of supernetworks.

The supernetwork representation reduces the problem of solving several
models jointly to that of finding the UE flow pattern over a single network.
This latter problem can then be solved using the methods discussed in Chapter
5. In particular, the resulting equivalent UE problem (over the supernetwork)
may include link interactions, in which case the methods explored in Chapter
8 should be used to find the equilibrium flow pattern. In this context, the

231

_

Part III Extensions of User Equilibrium

supernetwork representation means that link interactions can be modeled
among dummy links as well as among the basic network links. For example,
the interaction between transit vehicles and the general traffic can be modeled
and accounted for in the equilibration process.

The first part of this chapter discusses modal split/traffic assignment
models, in which the interaction between transit vehicles and the general traffic
is modeled explicitly. This treatment of the modal split/traffic assignment
problem generalizes the limited exposition of the subject given in Section 6.4.
The second part of the chapter describes the supernetwork concept discussed
here in more detail and uses it to formulate and solve several travel dimen-
sions simultaneously.

9.1 MODAL SPLIT IN MIXED TRAFFIC-
EXTENSIONS

As an illustration of the methodology presented in Chapters 6 through 8, this
section describes a joint modal split/traffic assignment problem which gener-
alizes the problem originally investigated in Section 6.4. The problem formu-
lation is expanded in three aspects: First, a full-scale transit network is includ-
ed in the analysis and a UE condition is assumed to hold over the transit
network (separately). Second, the link independence assumption is removed to
account for interactions among automobiles and buses, all moving jointly in
the traffic stream. Finally, the combined mode split/traffic assignment model is
extended to include any type of transit assignment procedure (such as pro-
cedures that are not based on the UE assumptions within the transit network).

Mode Split with Full Transit Network

Transit trips between the various origins and destinations take place
exclusively over the transit network. This network consists of nodes and links,
where the nodes typically represent bus stops or transit stations, and the links
represent line-haul movements. This section analyzes a problem of determin-
ing simultaneously the equilibrium flows over an automobile network and a
transit network. At this point it is still assumed that the transit links and the
automobile links are independent of each other (in terms of the effects of flow
on travel time).

The notation used in this section for the transit network parallels the
automobile network notation used throughout this text. Accordingly, let xb

and tb denote the flow and travel time, respectively, on transit link b, which is
part of a set of transit links .4. (Note that the flow on the transit links is
measured in terms of person trips, not vehicular trips.) Let fs and c denote
the flow and travel time, respectively, on transit route I connecting O-D pair
r-s (e C,, where 'rs, is the set of transit routes connecting origin r and
destination s). In this representation, the origin and destination centroid nodes

_·

232

Chap. 9 Supernetworks-Models of Joint Travel Choices

are common to both the automobile and the transit networks (see the dis-
cussion of network representation in Section 1.2). In parallel with the auto
links, tb = tb(xb), V b, and the incidence relationships are assumed to hold over
the transit network, that is,

Xb = E fS ,8 ¥ b [9.la]
rs I,

criS = S tb gI V E ,, , ¥ r, s [9.b]
be.d

where S, = 1 if transit link b is on the Ith transit route connecting origin r
and destination s, and TV, 8 = 0 otherwise. Finally, let qr, denote the automobile
O-D trip rate and let 4,, be the transit O-D trip rate between origin r and
destination s. Both {q4s} and {qr,} are variables in this problem. The total
(auto + transit) O-D trip rate for O-D pair r-s, however, is assumed to be
fixed and known. This total O-D trip rate is denoted by jrs. The following
relationships then hold:t

f[= qs V r, s [9.2a]
k

[r' = qr, V r, s [9.2b]

qs + rs = rs V r, s [9.2c]

The type of equilibrium over the transit network depends on the as-
sumed transit-route-choice behavior. One possibility is to assume that each
transit rider chooses the shortest travel-time route from origin to destination.
The equilibrium flows over the transit network will, in this case, satisfy a set of
UE-type conditions. In many situations, however, this assumption may not be
appropriate and other transit assignment models should be used, as shown
later in this section. At this point it is assumed that the UE conditions hold
throughout the transit network. Thus, at equilibrium, the flows and travel
times over the transit network are such that

(Cd - rs)fs = 0 V 1, r, s [9.3a]

cds- _,s > 0 V 1, r, s [9.3b]

where ti,, is the minimum transit travel time between origin r and destination
s. A similar set of conditions would hold over the automobile network, that is,
at equilibrium

(C'k - ur,)fk' = 0 V k, r, s [9.4a]

(c'k - Ur,) > 0 V k, r, s [9.4b]

Equations [9.3] and [9.4] define separate UE conditions for the transit

tAs mentioned in Section 6.4, it is assumed that the auto occupancy factor is 1. for
simplicity of presentation. If this is not the case, Eq. [9.2c] has to be modified to read 'q,,
+ 4, = q,, where qi is the average automobile occupancy.

233

Part III Extensions of User Equilibrium

AUTOMOBILE

NETWORK

Figure 9.1 Supernetwork representing a
joint modal split/traffic assignment prob-

NET WORK g lem, assuming a UE-type assignment
within the transit network.

and automobile networks. The role of the mode split model is to allocate the
O-D flows between these networks.

It would be simple to assume that the UE equilibrium equations govern
the modal split as well as the assignment of trips within each mode. In this
case the joint mode split/traffic assignment problem would be reduced to a UE
problem over the supernetwork shown in Figure 9.1 (see Problem 9.1). In this
supernetwork every origin centroid, r, is connected to a transit node, , and an
automobile node, r', by dummy links. The destination node is split in a similar
fashion. The dummy links r r', r - r, s'-- s, and s--, s all have zero travel
costs. When this supernetwork is in a user-equilibrium state, each of its com-
ponents (i.e., the transit network and the auto network) is also in a user-
equilibrium state. As explained in Section 6.4 (following program [6.25]), how-
ever, such an assumption is not reasonable and is not generally supported by
empirical observations.

The mode split between each O-D pair is more appropriately based on
an empirically calibrated modal split function. As in Chapter 6, the modal split
function assumed here is based on the logit model. Accordingly, the automo-
bile flow between origin r and destination s, at equilibrium, is given by

1
qs q= qs 1 + e(u,,-fi-) V r, s [9.5]

where S,, and 0 are (nonnegative valued, empirical) parameters, and the tran-
sit flow is given by 4r, = 4,S - q,, V r, s. Note that this logit formula is some-
what more general than the previous logit mode choice model introduced in
Eq. [6.26]. Equation [9.5] includes a constant, UPrs, which captures the effects
of all factors other than the travel-time difference on the modal split. For
example, a positive value of Tr, can be interpreted as an "automobile prefer-
ence" factor. In other words, T,, > 0 implies that the share of automobile trips
between O-D pair r-s is greater than the transit share between this O-D pair
even in cases in which u,s = t,.

Equivalent program. Following the logic used in Section 6.4 to
formulate modal split/traffic assignment problems, Eq. [9.5] should be invert-
ed to yield 1 = qs -q ,,

Urs(q) In + urs,, + 'Vr, [9.6a]
0 'qrs

234

Chap. 9 Supernetworks-Models of Joint Travel Choices

This equation expresses the O-D travel time over the auto network as a
function of the automobile O-D flow. This is the inverse of Eq. [9.5] which
gives the O-D auto flow as a function of the O-D travel time (as well as other
factors). Equation [9.6a] can also be expressed in terms of , = qr - qrs, that
is,

1 _ r_ _ _

W,s(4,s) = u,(qr,) = In q r + a + I'F [9.6b]

The difference between the case analyzed here and the one analyzed in Section
6.4 (see program [6.28]) is that tir is not fixed and known here. It is the
minimum travel time between r and s over the transit network at equilibrium.
Consider, then, the following equivalent mathematical program:

min z(x, i, q) = ta(co) d + + I F, d o

+ b(co) do [9.7a]
b

subject to

f,- = - rs ¥ V1 vr, s (u,s) [9.7b]
k

XGd = cirs V r, s () [9.7c]

f, ' >0 V k, 1, r, s [9.7d]

The first-order conditions for this program include the UE conditions
over the transit network and over the automobile network (i.e., Eqs. [9.3] and
[9.4]). In addition, the following condition holds at the minimum point:

1 , iFS-In - ur, + 'r, + au = 0 V r, s [9.8]0 q,-4,,

This equation can be rewritten as

qrs = 4rs 1 + e (- + V r, s

which is consistent with Eq. [9.5]. Thus, at equilibrium, the transit and auto-
mobile trip rates between each O-D pair are given by a logit equation. In
addition, the flows over each mode's network are distributed in accordance
with the UE conditions. Consequently, program [9.7] can be regarded as an
equivalent mode split/traffic assignment minimization (see Problem 9.2a).

Note that program [9.7] could also have been formulated in terms of
{q,,)} rather than {4,} by using Eq. [9.6a] (rather than [9.6b]) in the objective
function with the appropriate modifications to constraints [9.7b] and [9.7c]
(see Problem 9.2b). Note also that due to the shape of the logit curve, the final

._ __

235

Part III Extensions of User Equilibrium

solution will be such that 0 < qr, < 4,S and 0 < qr, < 4r, for all O-D pairs
served by the two modes.

Algorithmic solution procedures. Program [9.7] can be solved
by using the convex combinations algorithm described in Section 5.2. The
direction-finding step of this algorithm would involve, at the nth iteration, the
solution of the following linear program:

rs L k I I r q's - IF'smin Z"(g 8 v) E [I crsngrs + E c^T"scT + (In q" + A)P r

[9.9a]

subject to

i, =s _- k r,s [9.9b]
k

E YE~ = t, v r, s [9.9c]

r, r O Vf k, 1, r, s [9.9d]

where grs, gor, and v6, denote the auxiliary variables associated with the flow
variables fFS, FS, and ir,, respectively. The superscript n in program [9.9]
refers to the values of the corresponding variables at the nth iteration of the
algorithm, as in the preceding chapters. Program [9.9] also can be written in
terms of the auxiliary path-flow variables alone by using constraint [9.9c]. The
program then becomes

Y CrB~F~, ~ lgfA + In q smin z (g, *) = [ck Oks + -' (1 In -_ + .)+a l] [9.1Oa]8 4rs k I .)p~] 9.10a
subject to

gs' + C 9s' = " v r, s [9.10Ob]
k I

gk, > 0 V k, 1, r, s [9.10c]

This program can be decomposed by O-D pair. For each pair r-s, the objec-
tive function will be minimized by assigning the entire O-D flow, qr, to the
(current) minimum-travel-time path. This path may traverse either the auto
network (in which case its travel time is u) or the transit network (in which
case its travel time is u0). The consideration as to which mode is to be
assigned is as follows. If

1 ~____________+
u < + In + s [9.11]

then s is assigned to the minimum path through the road network; otherwise,
4,s is assigned to the minimum path through the transit network. In case of

236

Chap. 9 Supernetworks-Models of Joint Travel Choices

equality, it may be assigned to either path. (If Eq. [9.11] holds as an equality
[even approximately] for all O-D pairs, the current solution is likely to be the
equilibrium flow pattern.) This process is repeated for all O-D pairs, yielding
an auxiliary flow pattern {ya}, {}, and {,v^"}. These flows are then used to
define the descent direction for the algorithm. The move size along this direc-
tion is determined by solving

x. + (," -x:) . ,) I GO

min z(a) = E t,(co) do + E n + i do
0 < , < r rs 4 (Do 6 a -1 a O rg JO g co

+ E tb b(o) dco [9.12]
b

The move size that minimizes this program, a,, is used to update the flows for
the next iteration.

When this algorithm is applied, the convergence criteria mentioned in
previous chapters can be used to terminate the algorithm. The initialization
procedure is also similar to those discussed earlier (see Section 6.4 for an
example). As mentioned there, care must be taken not to initialize any of the
O-D flows (automobile or transit) at zero, to avoid undefined values of the
objective function.

Another algorithmic approach that can be adopted in this case is based
on the double-stage algorithms explained in Chapter 7. In this case the
direction-finding step would be executed as follows:

Direction finding:

(a) Find the current minimum paths {ur"} and {u^"} over the automobile and
transit networks.

(b) Find the auxiliary auto and transit O-D flows, {vn} and {r"}, based on
the current travel times, that is,

s[= qr[(1 + exp (i - u + r.,)]- and vr = is-Vq s , S

(c) Assign v'r and v^5 to the minimum paths identified in (a). This yields a
new flow pattern {ya} and {y}.

The rest of the steps are identical to the ones described above in connection
with the convex combinations algorithms.

The auxiliary flows used to define the descent direction of the double-
stage algorithms can be interpreted as the solution of the program

min z(y, ,) = t= y + ITr, a + Y iga rs (b0)

[9.13]

subject to constraints [9.9b] through [9.9d]. The reader is asked (in Problem

__ - - -

237

Part III Extensions of User Equilibrium

9.3) to investigate this application of the double-stage algorithm. As it turns
out, this algorithm is more efficient than the convex combinations method for
solving program [9.9]. The considerations leading to this conclusion are simi-
lar to those presented in Section 7.2 in conjunction with distribution/
assignment problems.

The logit-based modal split/traffic assignment problem discussed her-
can be formulated as an equivalent UE supernetwork by introducing a set of
dummy links associated with each O-D pair (see problem 9.4). The determi-
nation of equilibrium flows over this network may be prohibitively expensive
since each O-D pair has to be assigned separately in the course of applying,
say, the convex combinations method. If, however, direct O-D links are intro-
duced (as in Section 6.4) a supernetwork can be constructed and solved ef-
ficiently. This possibility is explored in the last part of this section. First,
however, the issues associated with modeling transit in mixed traffic are ex-
plained.

Mode Split with Interdependent Modes

The modal split/traffic assignment model discussed thus far assumes that
no interactions exist between the transit links and the auto links. This assump-
tion is not generally applicable, however, to bus transit. Buses move with the
general traffic and experience the same congestion and delays as do automo-
biles. This section extends the analysis of the joint modal split/traffic assign-
ment problem to cases in which the delay of either mode depends on flows of
both modes. At equilibrium, it is assumed that the UE conditions are satisfied
over both the auto and transit networks separately and that the mode split
between each O-D pair is given by a logit model (such as the one in Eq. [9.5]).

To model this bus/auto modal split/traffic assignment problem, assume
that each flow direction on a street is represented by two links: an auto link
and a transit link. Assume further that the set of auto links, d, and the set of
transit links, A, have been ordered so that a and represent auto and transit
links corresponding to the same physical street (and the same direction of
flow). Let :. and x represent the transit and auto flows on link (where
d E v~) and link a (where a E a), respectively. Similarly, let to and t represent
the travel times on links d and a, respectively. The link performance functions
are given by

t = ta(Xa, a) Va E . and d -E . [9.14a]

for the auto links, and

ta = t(x,,) V d e s. and a & [9.14b]

for the bus links.
The main congestion effects stem from the influence of the automobile

flows on the travel time of both automobiles and transit vehicles. In compari-
son, the effect of patrons' flow on transit delay is small. Furthermore, their

- -----··--------·I--- . I -- -- I

238

Chap. 9 Supernetworks-Models of Joint Travel Choices

effect on auto delay can be assumed to be zero as long as the flow of buses
remains unchanged. The effect of the bus movements themselves on the traffic
flow can be modeled as a constant, since bus routes and schedules can be
assumed fixed in a short-run equilibrium analysis. When the analysis horizon
is longer, it can be assumed that the bus operator changes bus routes and
frequencies in response to changes in transit ridership. In this case the flow of
bus riders can be assumed to have some influence on the traffic flow.t This
text, however, deals with short-run equilibrium in which this effect is second-
ary. In any event, travel time and flow interactions between the transit and
automobile modes cannot be assumed symmetric. In other words,

at.(x , ,) :aa(a, x)
z ¥Xaaxe. ax.

meaning that (as mentioned in Chapter 8) the mode split/traffic assignment
problem under consideration cannot be formulated and solved as an equiva-
lent minimization program. The diagonalization algorithm outlined in Section
8.2 can, however, be used to solve this problem.

The subproblem that has to be solved at the nth iteration of the diago-
nalization algorithm, when applied to this problem, is given by (see program
[8.31] and the related discussion)

min P(x, x, q) = E JtU dw + I (+ do
amry~a~qi~Zd~t~u~a~ d~ur qrs - (..c

+ E ,,a(c, xa) do [9.15a]
a

subject to

f = qs - qrs V r, s [9.15b]
k

Ef[' = ,qr V r, s [9.15c]

frkJl - 2 0 V k, 1, r, s [9.15d]

This program parallels program [9.7] except for the appropriate diago-
nalization of the automobile and transit link performance functions.

The mechanics of the diagonalization algorithm were described in Sec-
tion 8.2. Following a determination of an initial solution, the subproblem
(program [9.15] here) is solved for a new flow pattern (x" +l , +l). The solu-
tion is then compared to the previous one. If

(xn + , ,n+ l) , (xn, i") [9.16]
tlf the wait time for transit is included in the transit link performance function, and if the

operator's response is included in the analysis, note that the wait time may go down with
increasing volume (due to the increased frequency). This may result in nonconvex equivalent
minimization programs, which are difficult to solve.

___. ____

239

Part III Extensions of User Equilibrium

the algorithm terminates. If this condition is not met, the performance curves
are updated and a new diagonalized subproblem is formulated and solved.
Note that the interacting variables in this problem are the link flows. Conse-
quently, the O-D flows, {q,.}, are never (temporarily) fixed at any intermediate
value in any of the subproblems solved in the course of applying the diago-
nalization algorithm. Furthermore, the convergence criterion can be based
solely on the similarity of the link flows. Nevertheless, when the algorithm
terminates, the solution (x, x, 4) satisfies all the equilibrium conditions. The
proof of this statement follows the same logic as that used in Section 8.2 to
prove the validity of the diagonalization algorithm in the case of the UE
problem (see Problem 9.6). A convergence proof for this algorithm is given in
the references discussed in Section 9.4. These references also discuss the con-
ditions for uniqueness of the solution, which parallel the Jacobian condition
discussed in Chapter 8.

In solving each subproblem, the direction-finding step is carried out in a
manner analogous to the solution of program [9.7]. In other words, the net-
work is decomposed by O-D pair and criterion [9.11] is used to decide
whether 4,, is assigned to the minimum path through the transit network or
the minimum path through the auto network.

The convergence considerations discussed in Section 8.2 apply to this
algorithm as well. Consequently, instead of using the original version of the
diagonalization algorithm, it is more efficient to use the streamlined approach
discussed in that section. The use of this algorithm is demonstrated below.

Example. Consider the simple network shown in Figure 9.2. It con-
sists of one origin-destination pair connected by one bus link and one auto-
mobile link. The performance functions are given by

t =2 + 4x + [9.17a]
for the auto link, and

t= 4 + 3 + 2x [9.17b]

for the transit link. The O-D flow is

x + = 5 [9.17c]

This example is mathematically equivalent to the simple example considered
in Section 8.2 (with x replacing x and replacing x2-see Eqs. [8.37]). If
travelers were assumed to choose the least travel time mode (i.e., the shortest

AUTO LINK

Figure 9.2 Modal split/traffic assign-
ment supernetwork. Each network (auto-

Ox b / mobile and transit) includes only one
link. The data for this problem are given in

BUS LINK Eqs. [9.17].

_ _ __�_I_�__�__ __��_II__ __ _____ �_ _I_ � __

240

Chap. 9 Supernetworks-Models of Joint Travel Choices

path) from the origin to the destination, the equilibrium flow pattern for this
example would have been in accordance with a set of UE-type conditions. The
resulting equilibrium flows would have then been x* = 3 and * = 2 (with
t = t= 16). Assume, however, that the equilibrium split between the two
modes is given by a logit formula with parameters 0 = 1.0 and TI = 0, that is,
at equilibrium

x 1
[9.17d]

5 1 + e(- t) [d]

This simple example can be solved analytically by substituting Eqs. [9.17a]
and [9.17b] for t and t in [9.17d] and then substituting x = 5 - to obtain
the following equation in R:

= {1 + exp [4 + 3x + 2(5 - x)- 2 - 4(5 -) -]}-

The solution of this equation is * = 2.1,t implying that x* = 2.9. The equilib-
rium travel times are t* = 15.748 and t* = 16.083.

This example can now be solved by applying the streamlined algorithm,
starting from the initial solution x° = 1.0, xo = 4.0. [The initial solution (0, 5)
cannot be used here because of the logarithms in the objective function.] The
first iteration of this algorithm is as follows (see the description of the stream-
lined algorithm in Section 8.2 and the description of the solution of program
[9.7] given in Eqs. [9.9] through [9.12]):

Step 1: Travel-time update

t° = 2 + 4-1 + 4 = 10

1 o 4
it + In 5 4 + 34 + 2-1 + In 19.386

Step 2: Directionfinding. Since

1 ~o
to < 0 + IIn 5go yO=5 and 90=0

Step 3: Move-size determination

+4a ¢4-4a 4-4a
min (6 + 4o) do + In dc + -(6 + 3) d

0-,< Jo Jo 15J0

The solution is,
a = 0.295

Step 4: Updating. x^ = 2.82, x = 2.18.

Step 5: Convergence test. The convergence criterion of flow similarity
is not met. Go to step 1.

tThe actual solution is xi = 2.083984.

��_� __ __·____

241

Part III Extensions of User Equilibrium

TABLE 9.1 Algorithmic Iterations for the Network in Figure 9.2

Iteration x max Xa -l + n f- Y" a m Xa a

0 1 4 10 19.386 5 0 0.2949 0.9194
1 2.1797 2.8203 1.1797 13.539 17.078 5 0 0.1608 0.3533
2 2.6332 2.3668 0.2081 14.900 16.260 5 0 0.0736 0.1357
3 2.8075 2.1925 0.0736 15.422 15.945 5 0 0.0305 0.0521
4 2.8744 2.1256 0.0305 15.623 15.824 5 0 0.0121 0.0200
5 2.9000 2.1000 0.0121 15.700 15.777 5 0 0.0047 0.0077
6 2.9099 20.0901 0.0047 15.730 15.759 5 0 0.0018 0.0029
7 2.9137 2.0863 0.0018 15.741 15.752 5 0 0.0007 0.0011

2.9151 2.0849 0.0007 0.0004

The remaining algorithmic iterations are shown in Table 9.1. As this table
shows, the convergence rate is asymptotic, as expected.

Non-UE Transit Assignment

The assumption made thus far in Section 9.1 is that the UE conditions
can be applied to a transit network. These conditions result from the assump-
tion that each transit traveler chooses the shortest-travel-time route (over the
transit network) from origin to destination.

Empirical studies show, however, that travel time may not be the major
determinant of transit route selection. Other factors, especially waiting time for
the bus (or train)t and the need to make a transfer, may be very important in
determining which route is chosen. Many of these factors cannot be easily
modeled as link impedances and therefore cannot be analyzed in a framework
which is based on selecting the minimum-impedance path. For example, con-
sider a situation in which transit patrons can use several bus lines to get from
a given origin to a given destination. If these patrons try to minimize their
waiting time, some of them may take the first bus that comes along, regardless
of the in-vehicle travel time. The implication of such behavior is that even
without congestion phenomena, not all transit patrons between the origin and
the destination will necessarily use the same single route. If the bus lines are
scheduled with no consistent pattern relative to each other, and if patrons
arrive randomly at the origin bus stop, the O-D flow assigned to each line will
be directly proportional to its frequency. Such an assignment, or network
loading rule, would not generate a UE-type situation over the transit network.

As a result, some transit assignment models do not use the UE criterion
to assign the transit trips onto the network. For example, the Volvo Bus
Transit Planning Model (see reference in Section 9.4) assumes that all pas-
sengers would use a no-transfer path from their origin to their destination if

tEmpirical studies (some of which are referenced in Section 13.5) indicate that waiting time
is two to three times more important than the in-vehicle time in determining mode choice.

�__,____

242

Chap. 9 Supernetworks-Models of Joint Travel Choices

Equivalent
Transit
Links

Figure 93 Supernetwork for a joint
modal split/traffic assignment problem
with non-UE transit assignment model.

available. Only if no such path is available would a one-transfer path be
considered. If such a connection of two bus lines is not available, two-transfer
paths are then used, and so on. When more than one option is available within
a category (e.g., no transfer), the trips are distributed between the routes on the
basis of the relative bus frequencies.

Transit assignment models such as Volvo's cannot be handled easily
using equivalent mathematical programming methods and network repre-
sentation. The problem addressed here is one of integrating these approaches
with a UE model over the auto network, given that the transit travel times
may be influenced by both transit and auto flows.

Such an integration can be accomplished by treating the transit network
exogenously. The effects of flows in this network on the auto network will be
represented by direct O-D equivalent transit links as shown in Figure 9.3. The
flow on each of these links is 4,. This representation is similar in appearance
to the supernetwork used to model the simplified mode split/traffic assignment
problem in Section 6.4.

Assuming a logit-based modal split function, the "travel time" over each
of the aforementioned equivalent transit links, t, is given by the "per-
formance function"

(4, , i) =,In + ,, + ar(x, i) V r, s [9.18]

where a,,(x, i) is the minimum travel time over the transit network when the
automobile flows are x and the transit flows are x.

Consider, now, the application of the diagonalization algorithm to the
equilibrium over the above-mentioned supernetwork.t The (diagonalized) sub-
problem that has to be solved at every iteration of this algorithm is

min z(x, 4) = o ta() dc+ n co + rs
m p a Jo drsJ L6 4r8

+ (x, ")] dco [9.19a]

tThe following discussion assumes, for clarity of presentation, that automobile travel times
are not affected by transit flows. As mentioned before, this is a reasonable approximation. (It is
still assumed that the transit travel times are affected by the automobile flows.)

_·__ _____��__

243

Part III Extensions of User Equilibrium

subject to

frs + ,4r = qs V r, s [9.19b]
k

f[k 2 0 V k, r, s [9.19c]

< ,, < ,s V r, s [9.19d]

where the diagonalization principle is reflected in i,(x", x") being a constant in
program [9.19]t. When the streamlined version of the diagonalization algo-
rithm is applied to the problem at hand, the transit link flows may be obtained
by any transit assignment model. The following steps have to be executed in
order to apply this algorithm to the supernetwork under considerationS:

Step 0: Initialization. 'Obtain an initial set of link flows over the super-
network. These include the auto flows {x°}, and the flow over the dummy
transit links, {q,4}. Also obtain an initial transit link flow, {}.§ Set n = 0.

Step 1: Travel-time update. Set

ta = ta(xa) V a E d

t = tb(x",) b a

Compute

as = ,s(X, ") V r, s

Step 2: Network assignment. Perform an all-or-nothing assignment
over the modified network (i.e., assign q,, to this supernetwork).ll This yields a
new link-flow pattern, {ya} over the auto network and {S} over the direct
O-D links representing transit.

Step 3: Move-size determination. Find an a, that solves

x + (y XD

min z(a) = t0(co) dco
OxS 1 aJO

rs | r -- O)

tNote that constraint [9.19d] is automatically satisfied at the solution of program [9.19]
(see program [6.28] and the related discussion).

tThe notations used in this description parallel the ones introduced in conjunction with
the discussion of mode split with full transit networks (see Eqs. [9.1] and [9.2] and the related
discussion).

§This is calculated exogeneously using an appropriate transit assignment procedure.

IThe equivalent travel times over the dummy transit links are given by Eq. [9.18].

I___ _ 1 _ __ _ �_ __ _

244

Chap. 9 Supernetworks-Models of Joint Travel Choices

Step 4: Flow update. Set

x"+ = x + an(y - x) V a
1rs = ,, + ,(v - 4.) V r, s

Assign + q,+ to the transit network using the transit assignment rule. This
yields 3" + .

Step 5: Convergence criterion. If (x" + l , I"+) ~ (x, q"), stop. Other-
wise, set n = n + 1 and go to step 1.

Note that the term ur(, ·) is not part of the line search in step 3 (i.e., it is not
a function of any of the flow variables) since it is fixed by the diagonalization
process.

This program will have a unique solution if the appropriate conditions
mentioned in Section 8.2 hold for the supernetwork under consideration.t The
first of these conditions requires each link performance function to be an
increasing function of its flow. This requirement naturally holds for the basic
(auto) links and should hold for the dummy transit links as well, regardless of
the transit network assignment rule used. The second part of the uniqueness
conditions requires that each link be influenced primarily by its own flow. This
condition can be expected to hold over the basic (auto) network due to the
characteristics of the link interactions mentioned in Section 8.2. Regarding the
dummy transit links, this condition may not always hold since the marginal
effect of an automobile trip may be higher than the marginal effect of a transit
trip on the transit O-D equivalent travel times. In other words, it may be the
case that the requirement that

alSrs X, X) 8>> a,(X, X) V r, s, a [9.20]
&0IF cgXa

does not hold.: In such cases the equilibrium may not be unique.
When the streamlined diagonalization algorithm is executed as described

above, it will converge to an equilibrium flow pattern. At that point, the travel
times and flows over the basic network would satisfy the UE conditions, with
the relative transit and automobile flows determined by a logit model, and the
flows over the transit network derived from the model used for transit as-
signment.§

tAs mentioned in that section, the uniqueness condition can be summarized as a require-
ment on the positive definiteness of the link-travel-time Jacobian. In this case the Jacobian is
defined for the modified network.

tNote that if these uniqueness conditions do not hold, it does not necessarily mean that
the problem does not have a unique solution. It only means that uniqueness cannot be guaran-
teed a priori.

§The proof of this statement follows the lines of the proof given in Section 8.2 regarding
the validity of the diagonalization algorithm. The only difference is that the proof, in this case,
applies to the modified network (supernetwork), with program [9.19] being solved as the sub-
problem.

_ _�_���___

245

Part III Extensions of User Equilibrium

9.2 JOINT TRAVEL DECISIONS
AND SUPERNETWORKS

This section brings together many of the ideas presented in Parts II and III. It
outlines a framework for jointly solving several travel decision models, ac-
counting for equilibrium effects. The travel decisions that can be included in
this framework are the decisions of whether to travel (during the design
period), by which mode, where to go, and what route to take. As mentioned in
the introduction to this chapter, these decisions correspond to the four steps of
the conventional urban transportation planning process, which, for the most
part, have been modeled separately in practice. The aggregation of all individ-
ual decisions associated with taking a trip is usually captured in "trip pro-
duction" or "trip generation" models. Such models relate the general level of
accessibility of each origin (zone or centroid) to the number of trips originating
there. The variable-demand models discussed in Chapter 6 can be viewed as a
special version of trip generation models. The mode choice and destination
choice problems have also been traditionally modeled independently of each
other and independently of the route-choice decisions. Sections 6.4 and 9.1
show how mode choice can be modeled simultaneously with the traffic assign-
ment, and Chapter 7 presented joint distribution/assignment models. This sec-
tion demonstrates how all these models can be integrated in a joint formu-
lation and solved simultaneously using the supernetwork concept.

Joint Modal Split/Distribution/Assignment Model

This part of Section 9.2 describes a combined modal split/trip distri-
bution/traffic assignment model. The model assumes that at equilibrium, flows
and travel times over the basic network will satisfy the UE equations, and that
both trip distribution and modal split will be given by logit-based demand
functions.t The transit network is assumed to be independent of the automo-
bile network and the transit O-D travel times are assumed fixed (i.e., not flow
dependent) for the purposes of this exposition. In other words, at equilibrium,
the flow of automobile users between origin r and destination s, q,s, will be
given by (see Eq. [9.5])

1
qs =,.s 1 + e °(" -rsa- r') [9.21a]

where 0 and P,, are parameters of this logit model, and 4s is the total (auto-
mobile + transit) flow between r and s. The transit flow is ,,, where jr =
q, - q,s.

tOther models may also be used in this context. Note only that the trip distribution model
has to satisfy the trip production constraint (see Section 7.1) and a share model is therefore
convenient to use for this purpose. The logit formula was chosen to exemplify the concepts given
here due to its wide-spread use and flexibility (e.g., any share model can be represented as a
generalized logit equation).

·1111

246

Chap. 9 Supernetworks-Models of Joint Travel Choices

Unlike the model discussed in Section 9.1, the total O-D flow, qr, is not
constant in this particular model. This flow is given by a logit-based trip
distribution model, that is,

e- 7(1S - MN)

qs = Or e(ur r) [9.21b]

m

where y is a parameter, Mr, measures the attraction of destination s to trips
from r,t and 0, is the total flow originating from node r.

Equation [9.21b] implies that the distribution of flow to the various
destinations is determined by the automobile travel time to these destinations,
as well as some fixed parameters. Since the transit travel times, {trs}, are
assumed to be flow independent, these times can be treated as constants in the
distribution model and be included in the attraction measures, {Mr,}. The
distribution model will then be

e - (us + ar -M,)
r = ' , e_(,"+ t,,) V r, s [9.22]

where M m = M,, + tirm V r, m (see Eq. [9.21b]). It is not clear, however, that
trip distribution should depend on the sum of the transit and automobile
travel times. If the effect of these times on trip distribution is not identical, they
may be scaled by different parameters, or a different functional form may be
used in the trip distribution equations.: For simplicity of presentation, the
following discussion assumes that the trip distribution model is given by Eq.
[9.21b]. Similar models can be developed for other specifications of the trip
distribution equation (see Problem 9.14).

The supernetwork that can be used to solve this modal split/trip distri-
bution/traffic assignment problem includes two types of links in addition to
those of the basic network. First, all destinations are connected to a virtual
(dummy), origin-specific destination node, r', by dummy links. This repre-
sentation parallels the augmented network illustrated in Figure 7.2. The flow
on the dummy link connecting destination s to the dummy destination r' is 4 r,.
The equivalent performance functions on these links are given by (see Eq.
[7.22])

tsr, = - ln 4r, - Mrs V r, s [9.23a]

tIf the attraction at destination s is not related to origin characteristics, the attraction
measure, M,,, can be indexed by s only, as in Section 7.2.

:For example, given that the mode split is given by a logit formula such as Eq. [9.21a], the
terms (u,, + ur) in Eq. [9.22] could be replaced by the function -(1/O) In (e- s(".+ ') + e-"t).
This nonlinear function of urm and ,,, captures the combined level of service (of transit and
automobile) between r and m under these circumstances. The rationale behind this particular
specification is beyond the material presented thus far with regard to logit models. Chapter 10
explains the concept of satisfaction, which bears directly on this formulation.

---- -- -. __

247

Part III Extensions of User Equilibrium

Figure 9.4 Supernetwork for a joint
mode split/trip distribution/traffic assign-
ment problem.

The transit mode is represented, in this supernetwork, by direct origin-
to-destination links as in the last part of Section 9.1. The flow on the transit
link connecting O-D pair r-s is 4, and the equivalent performance function
on each of these links is given by (see Eq. [9.18])t

s) = 0In + P, + i, V , s [9.23b]= i -,,
The supernetwork corresponding to this representation is shown in Figure 9.4.
In this example, the network includes two origins and three destinations.
Origin nodes 1 and 2 are connected to destination nodes 4 and 5 by direct
transit links, shown as dashed lines in the figure. In addition, the destinations
are connected to origin-specific dummy destination nodes.

The formulation of the modal split/distribution/assignment equilibrium
problem as an equivalent mathematical program is not straightforward. The
reason is that the equivalent performance function on the dummy transit links
(given in Eq. [9.23b]) includes two types of flow variables. The first one is the
transit flow, ,,, and the second one is the total O-D flow, q,,, which is a
variable in this problem. Thus, even if transit level of service is assumed to be
independent of automobile flow, the equivalent transit travel time, t, is a
function of the flow over the dummy link sr' in addition to the transit flow (i.e.,
it is a function of both 0,, and q,). Consequently, link independence cannot be
assumed. Furthermore, this interaction is not symmetric, as is evident from
Eqs. [9.23a] and [9.23b], and this problem cannot, therefore, be formulated as
a minimization program.

The equilibrium flows can be determined, however, by using the diago-
nalization algorithm. This algorithm requires iterative solutions of a math-
ematical programming subproblem, formulated by fixing the effects of "foreign
flows" on the travel time (or equivalent travel time) of each link. The iterations
continue until the solutions of two consecutive subproblems are judged to be
sufficiently similar. When the supernetwork under consideration is diago-
nalized, the subproblem that has to be solved at the nth iteration of the

tFor simplicity of presentation, this formulation assumes that transit travel times are
independent of both transit and automobile flows. The model can be generalized to include these
interactions.

I

248

Chap. 9 Supernetworks-Models of Joint Travel Choices

algorithm is the following:

min z(x, , 4) = Ec I I co + I, + t) dtt.q(In _ oa e J r'' r
+ E I| (In o - M, d [9.24a]

subject to

fks = qrs - rs. V r, s (Ur.) [9.24b]
k

E 4, = O, V r (,) [9.24c]

f[s 2 O V k, r, s [9.24d]

0 < 4," <- 4s V r, s [9.24e]

This program is formulated in terms of the total O-D flows, q = (..., s, ...),
and the transit flows, q = (..., 4,s, ...), in addition to the link flows over the
basic network. It can also be expressed explicitly in terms of x, q, and q. The
diagonalization principle is reflected in this formulation by fixing is at its level
at the nth iteration, 's", in the second sum in Eq. [9.24a].

Program [9.24] is a straightforward program, the first-order conditions
of which aret

(cr'k - u,)f7 = 0 V k, r, s [9.25a]

c' - Ur, > 0 V k, r, s [9.25b]

1In q + Wrs + ,, - ur = V r, s [9.25c]

- In r, - M + u - r = V r, s [9.25d]

and the original constraints [9.24b] through [9.24e].
The variables in this equation should be superscripted by n + 1 to indi-

cate that they stand for the solution of the diagonalized subproblem [9.24].
Recall, however, that qr, in Eq. [9.25c] is superscripted by n due to the diago-
nalization. When the diagonalization algorithm converges, Q4" 4Is+1, indicat-
ing an (approximate) equilibrium solution.

Equations [9.25a] and [9.25b] specify the UE conditions over the basic
network. Equation [9.25c] can be rewritten (given that 4-+ i) as

rs iqrs 1 + es (1-MS + ?'F) [9.26]

tAs mentioned before (see program [9.19] and the related footnote), constraint [9.24e] can
be ignored in the derivation of the first-order conditions since it will be satisfied automatically at
the minimum (see Eq. [9.26a]).

_ ____ ___

249

Part III Extensions of User Equilibrium

where the superscript denoting the iteration number is omitted for clarity. This
equation means that the transit share of flow is determined by a logit model,
as required by Eq. [9.21a]. Condition [9.25d] can be rewritten as

4 = e-e- y(" - M) V r, s [9.27a]

The trip production constraints [9.24c] should also hold and thus

4,rm = eYF E e- Y(u" - Mrm) [9.27b]
m m

Equation [9.27a] can be divided by Eq. [9.27b] to give

q,, e-y(Urs - Mrs)
E q X e-(-Arm.Mm) r, s [9.28]

Z 'ir - C e-YE e -Zn
m m

which is a multinomial logit model with parameter y.
The dual variable A, plays the same role in this model that u,s plays in

the standard UE model of a basic network with fixed demand, analyzed in
Section 5.2. It represents the travel time on the minimum path (through the
supernetwork) connecting origin r to the dummy destination node r'. In other
words, at equilibrium the equivalent travel time between node r and node r' is
the same on all routes used between these two nodes. To see this, note that
[here are two types of paths connecting node r and r' in the supernetwork
under consideration. The first one goes through the basic network and a
dummy link sr'. The travel time over this path is

Urs + (-ln rs - Mrs) [9.29a]

At equilibrium, the equivalent travel time over this path equals Ar, as indicated
by Eq. [9.25d].

The other type of path from r to r' goes through the transit link from r to
some destination node s, and then through a dummy link from s to r'. The
travel time on this path is

In qr - rs + rs + In 4qr- Mrs [9.29b]

This expression also equals r,, as can be verified by simply adding equations
[9.25c] and [9.25d]. Thus ,r is the minimum "travel time" between origin, r,
and the virtual destination, r', through the supernetwork under consideration.

The diagonalization algorithm can be applied iteratively to this supernet-
work, solving subproblem [9.24] at each iteration. Each subproblem can be
solved by using the convex combinations algorithm. Such iterative appli-
cations would converge to the equilibrium solution of the modal split/trip
distribution/traffic assignment problem. The proof that the point of conver-
gence corresponds to the equilibrium flow pattern could follow the same lines
as the proof given in Section 8.2. In view of the supernetwork representation,

250

Chap. 9 Supernetworks-Models of Joint Travel Choices

however, this effort may be superfluous since a proof that applies to a simple
basic network with fixed demand also applies to a supernetwork. Furthermore,
the streamlined diagonalization algorithm described in Section 8.2 can be used
to solve this problem instead of the original version of this algorithm, for faster
convergence.

When the streamlined diagonalization algorithm is applied to this prob-
lem, each iteration involves the determination of the minimum (equivalent)
travel-time path through the supernetwork from each origin, r, to each virtual
destination, r'. The problem can, therefore, be decomposed by origin. When
each origin is considered, the aforementioned minimum path is assigned 0,
flow units. When all origins have been assigned, the resulting intermediate flow
pattern (y", v", 9") is used to define a descent direction and compute the flow
pattern for the next iteration.

To expedite convergence, it may be more efficient to use a multistage
algorithm (similar to the double-stage algorithm discussed in Chapter 7) to
solve subproblem [9.24]. Instead of finding the search direction by loading 0,
flow units to the shortest path between r and r', it may be more efficient to
compute the minimum-travel-time path over the automobile and transit net-
works separately, apply the distribution models to find ,. for every O-D pair
r-s, apply the modal split model to find v,, and ,, and then assign {v,,} to the
automobile network to find the set of intermediate flows, {yZ}. The remaining
steps of the algorithm would be identical to those of the convex combinations
method.

This multistage approach can also be used in conjunction with the
streamlined diagonalization algorithm. In this case each iteration will be exe-
cuted as a single multistage step and the flows will be updated after every
iteration.

The diagonalization approach can also be used with a doubly con-
strained trip distribution model (see Section 7.3). Such a model would include
the additional constraints

E qs =D V s
r

in program [9.24]. This implies that if the convex combinations algorithm is
used to solve the subproblems, a Hitchcock transportation problem would
have to be solved at every iteration of this algorithm (see Section 7.4).

Joint Modal Split/Distribution/Assignment Model
with Variable Demand

As mentioned in the introduction to Section 9.2, the framework devel-
oped in this text can be used to solve problems which include trip generation,
modal split, trip distribution, and traffic assignment. Such a problem would be
similar to the one addressed above (see Eqs. [9.21]) except that 0,, the total
number of trips originating from each node r, would not be given exog-
enously. Instead, it is replaced by a special demand functon that relates total

----- __ _.

251

Part III Extensions of User Equilibrium

trip production to the level of service that travelers face over the network. The
trip generation (or trip production) model for origin r is

O. = Dr(Ar) V r [9.30]

The argument of the trip generation function,t A,, is the equivalent travel time
between origin r and the dummy destination node, r', in the supernetwork
representation of the modal split/distribution/assignment problem (see Eqs.
[9.29]).

Combining the concept described in Sections 6.2 and 6.3 for user equilib-
rium problems with variable demand along with the diagonalization approach,
the joint trip generation/modal split/trip distribution/traffic assignment prob-
lem can be solved by adding one term to the objective function of program
[9.24]. This term is (see Eq. [6.a])

E D 1() do [9.31]rsO

The resulting subproblem can, again, be solved by an application of the
convex combinations method. Note that this requires that an upper bound
constraint be added to the set of constraints of program [9.24]. The constraint
is (see Eq. [6.10c] and the related discussion)

0, < 0, Vr [9.32]
where Or is a (large enough) constant. The application of the algorithm to each
subproblem parallels the solution of the variable-demand problem presented
in Section 6.2.

In a fashion similar to network representation associated with the excess
demand formulation described in Section 6.3, the supernetwork concept can be
extended to include the trip generation model as well. To do this, the supernet-
work depicted in Figure 9.4 should be modified by adding dummy links lead-
ing from each origin, r, to the associated dummy destination node, r', as shown
in Figure 9.5. Letting e, = 0, - 0,, the performance function for these dummy
links, Wr(), will be given by (see Eqs. [6.23])

W,(e,) = D- '(- e,) [9.33]

In this formulation, O, can be interpreted as the total potential flow out of
node r. It includes both travelers and nontravelers and may equal, for example,

tThe demand function shown in Eq. [9.30], D,(), can be calibrated from observations of
0, and A, over an existing urban network. Calibration and model estimation issues are presented
in Chapter 13. At this point, it is only important to realize that A, can be measured, given that the
trip distribution and modal split models are known, by using Eqs. [9.29]. Note that a trip
production function such as the one shown in Eq. [9.30] may include many other variables which
characterize origin nodes, such as size, population, auto-ownership level, and so on. These vari-
ables, however, are exogenous to the equilibrium model. In addition, A, implicitly includes the
variables that appear in the modal split and trip distribution models (see Eqs. [9.29] and the
related discussion).

_��__I I_· __ __ � __ __

252

Chap. 9 Supernetworks-Models of Joint Travel Choices

Figure 9.5 Supernetwork for a joint trip
generation/mode split/trip distri-
bution/traffic assignment program.

the entire population of the traffic zone represented by node r. The argument
of W(), e,, is the flow over the excess flow link r-. r'; it is, in fact, the "flow
of nontravelers" out of node r.

Analysis of Supernetworks

The supernetworks presented earlier in this section are two examples of
joint analysis of several travel choice dimensions. Actually, most of the net-
work equilibrium models addressed in this book and elsewhere could be
solved using supernetworks of various complexity.

The simplest "supernetwork" includes only the basic automobile net-
work. This standard UE problem, analyzed in Chapter 5, requires the specifi-
cation of a complete O-D trip matrix. Such a specification assumes that the
number of auto trips between each O-D pair is fixed (and known) and is not
influenced by the transportation level of service. This basic framework can be
extended in several directions, three of which are described in this text. These
include models of equilibrium assignment with variable demand, modal split,
or trip distribution. The variable-demand formulation presented in Chapter 6
assumes that the O-D flows are given by a function that depends on the O-D
level of service. The problem can be solved with the excess-demand formu-
lation, which leads to a supernetwork representation. Instead of specifying the
number of O-D trips, the variable-demand model requires the specification of
the O-D demand function. In this model the total potential O-D trips is either
assigned to the network, or is not assigned at all if the O-D travel time is too
high.

The combined modal split/traffic assignment models discussed in Sec-
tions 6.4 and 9.1 assume that the total flow between each origin and each
destination is fixed and known. The O-D flows on the basic network, however,
depend on the split between auto and transit trips, as given by a special modal
split function. Similarly to the variable-demand model, the number of trips

_ ___·___

253

Part III Extensions of User Equilibrium

between each O-D pair (and also the modal split) depends only on the level of
service between the O-D under consideration, not on the level of service
between the origin and other destinations. The solution methodology can be
based on various supernetwork representations, depending on the transit as-
signment model used.

The "competition" between O-D pairs is modeled explicitly in the joint
distribution/assignment model discussed in Chapter 7. In that chapter the
focus is exclusively on the automobile network. The required inputs include
the total number of vehicular trips originating at each node. The O-D trip
rates are determined by the model, based on the level of service between each
origin and all possible destinations. Again, this problem can be solved by using
a supernetwork representation, as shown in Chapter 7.

In a joint modal split/trip distribution/traffic assignment model, the
input constants include only the total number of trips originating at each
node. The distribution of these trips between the various destinations and the
split between transit and automobile trips are all determined endogenously by
the model. These variables appear as flows on various components of an
appropriate supernetwork. This model requires, however, that modal split and
trip distribution functions be specified.

Unlike the aforementioned models, the trip generation/modal split/trip
distribution/traffic assignment supernetwork model does not require any con-
stant trip rates as input. Instead, it requires the specification of a trip gener-
ation model in addition to a mode split model and a trip distribution model.t
All these models are then formulated as performance functions over dummy
links of an appropriate supernetwork and the equilibrium problem is solved
using the diagonalizaton algorithm. Each iteration of this algorithm requires
the solution of an equivalent UE mathematical program over the supernet-
work. The output of this analysis includes the flow of trips generated at each
origin node, the flow between each origin and each destination, by mode, as
well as the flow on each link of both the transit and auto networks. The
output also includes the travel times on all the supernetwork links.

The principal advantage of a joint model of the travel decisions included
in the supernetwork framework is that it may contribute to a more consistent
analysis of the impact of transportation policies and designs. For example, if a
policy of lowering transit fares is contemplated, its consequences may include
higher transit volumes along with an increase in the flow of people going to
destinations served by transit. Since these travelers will not be using their
automobiles, the flow pattern over the basic network will change, thereby
influencing the automobile level of service. These changes may, in turn, induce
travel between some O-D pairs and reduce travel between others, possibly
affecting the whole activity system in the area under study. The problem
formulation given in this chapter can be used either as a conceptual guide for
looking at the problem as a whole or as an actual problem solving tool. In

tin addition, all the models reviewed here require the specification of the (transit and auto)
networks, including all the link performance curves.

1 _I _ _ _I_ _ _�_ _ ___� _ _ __ �__ 1 ____ ___I

254

Chap. 9 Supernetworks-Models of Joint Travel Choices

either case it may contribute to a consistent prediction of the consequence of
many transportation-related projects in urban areas.

The possible drawbacks associated with the supernetwork approach in-
clude the following:

1. The computational effort associated with such an analysis is higher than
that required for nonequilibrium analysis, in which trip generation,
modal split, and trip distribution are assumed to be independent of the
transportation level of service (or the level of service is assumed inde-
pendent of the flow).

2. If the supernetwork is used as an actual problem solving tool, the net-
work structure implies certain restrictions on the demand functions used
to model trip generation, modal split, and trip distribution. When these
steps are modeled independently (not within an equilibrium framework),
these demand functions can be more elaborate.

Many of the consideratons mentioned here can be reduced to a common
yet difficult trade-off between accuracy and added realism, on the one hand,
and the added costs associated with a more elaborate model, on the other.
These trade-offs naturally come into play in almost every aspect of the analysis
(including the level of detail of the network representation, the form of the
demand and performance functions, the convergence criteria, the complexity
as well as the inclusion or exclusion of submodels, and so on). The analysis
offered in Part III sheds some light on what kind of models can be formulated
and how such formulations can be solved. As noted throughout the book,
there are many cases in which the resulting model may not be solvable, or it
may not have a unique solution. In such cases a model may have to be
modified or approximated by considering, again, all the above-mentioned
trade-offs.

In conclusion, it is important to remember, that in most cases, the major
component of the costs of studying urban transportation networks is not the
analytical efforts, model building, or computer time, but the costs of obtaining
the relevant data. In fact, in most cases data considerations are the driving
force and the dominant factor in model selection and analysis style.

9.3 SUMMARY

The analysis framework described in Parts II and III is extended and gener-
alized in this chapter to the joint treatment of several travel-choice dimensions.
These dimensions include decisions of whether to travel or not, which mode to
use, where to go, and what route to take. The flow pattern resulting from
travelers' choices along all these dimensions can be analyzed as an equilibrium
assignment problem over a supernetwork. The supernetwork includes the links
and nodes representing physical facilities such as streets and intersections, as
well as nodes and links representing the various travel choices. The per-

_.. __

255

Part III Extensions of User Equilibrium

formance curves on each of the supernetwork links may be interdependent.
Consequently, the supernetwork should be solved using the (streamlined) diag-
onalization approach of Section 8.2.

Section 9.1 concentrates on a combined modal split/traffic assignment
problem. It extends the results of Section 6.4 to include an explicit transit
network representation and to mode split with link interactions. This case is
especially important when the transit mode includes buses which move and
interact with the general traffic. The last part of Section 9.1 demonstrates how
this equilibrium framework can accommodate a transit assignment model that
is not necessarily based on travel-time minimization.

The concept of a supernetwork is fully illustrated in Section 9.2, in which
a supernetwork corresponding to a joint trip generation/mode split/trip distri-
bution/traffic assignment problem is formulated. The trip generation, modal
split, and the trip distribution models are given, at equilibrium, by appropriate
demand functions, whereas flows and travel times over the automobile net-
work satisfy the UE criteria.

9.4 ANNOTATED REFERENCES

Chapter 9 includes, for the most part, extensions of works and references
mentioned previously. A proof of convergence for the mode split/traffic assign-
ment diagonalization algorithm is given by Dafermos (1982). A combined
model of trip mode choice, trip distribution, and traffic assignment was studied
by Florian and Nguyen (1978) using the entropy concept. The concept of
supernetwork and its uses in combining travel demand and network equilibri-
um models was studied extensively by Sheffi and Daganzo (1979, 1980) in their
hypernetwork models. These authors use probit (rather than logit) models in
their work. Probit models are discussed in Chapter 10, while the hypernetwork
concept and algorithm are mentioned only briefly in Section 12.3.

As mentioned in Section 9.1, the supernetwork framework can accommo-
date transit assignment models that are not based on travel-time mini-
mization. The Volvo Transit Assignment Model mentioned in Section 9.1 is
described by Andersen (1977). Other approaches to transit network assignment
are described by Dial and Bunyan (1968) and Han and Wilson (1982).

Section 9.2 refers to the four-step urban transportation planning process.
This process is described in many references including the books by Hutchin-
son (1974), and Stoper and Meyburg (1975).

9.5 PROBLEMS

9.1. Show that the following program describes UE conditions over a network of
transit and automobile links (with no flow interaction):

min z(x, x) = A t(co) do + E |b(co) do)

I--- --- --- ·· ----- · I ---------- -- --- --�__��__ I -- J

256

Chap. 9 Supernetworks-Models of Joint Travel Choices

subject to

f[S = q, r, s (us)
k

=,, Vr, s ()

qrs + ,s = Vr, s (,s)

fks,1 >2 O v , k, r, s

and the incidence relationships

x, = E fk ,k, c s = E ta a5 k
rs k a

Xb = E bJE Ck = E tb k
rs I b

Interpret each of the first-order conditions and the dual variables. Sketch the
associated supernetwork.

9.2. (a) Show that the first-order conditions of program [9.7] specify the UE con-
ditions over each mode's network and the logit mode split model between
the modes.

(b) Investigate the first-order conditions of program [9.7] if the constraints are
specified as in Problem 9.1. Show that both formulations have the same
first-order conditions.

9.3. Consider the double-stage algorithm described in conjunction with the joint
mode split/traffic assignment program (the discussion following Eq. [9.12]).
(a) Explain intuitively why this algorithm may be somewhat more efficient than

the convex combinations algorithm for this problem.
(b) Show that the direction generated by this algorithm is a descent direction in

terms of the appropriate equivalent minimization program (Eqs. [9.7]).

9.4. Formulate a supernetwork for the joint mode choice/traffic assignment problem
given by program [9.7]. What are the computational difficulties associated with
finding the UE flow pattern for this supernetwork?

9.5. Assume that the marginal effects of bus trips flow on automobile travel time
equals the marginal effect of the automobile flow on the bus travel time [i.e.,
ata(Xa, a)/aa = ia(xa,, Xa)/axa]. Formulate the equivalent mathematical pro-
gram and suggest an algorithmic solution procedure for the combined bus/auto-
mobile modal split/traffic assignment problem.

9.6. Prove that the diagonalization algorithm applied to subproblem [9.15] with
convergence criterion [9.16] solves the joint problem of equilibrium assignment
and logit mode choice with link interaction problem. (Hint: The proof is very
similar to the one given in Section 8.2.)

9.7. Apply the streamlined diagonalization algorithm to a simple network consisting
of an origin and a destination connected by an automobile and transit link
(similar to Figure 9.2). The performance functions are given by

t = 2 + x2 + x

t = 3 + 2x2 + 2x

_

257

Part III Extensions of User Equilibrium

and the O-D volume is q = x + x = 6. The auto/transit modal split at equi-
librium is given by the following logit function:

x_ 1

x + x 1 + eo° 5(it-

Show that the iterations are converging toward the correct equilibrium point.

9.8. (a) Investigate the condition under which program [9.15] has a unique solution.
(b) Repeat part (a) for program [9.19].

9.9. Consider the network shown in Figure 9.2 with the following volume-delay
function:

t, = 2 + xi

t2 = 1 + x 2 + 2x2

Assume now that a bus service operates along the second link. The travel time
on the bus is

tb = 3 + xb + X2

where xb is the flow of bus passengers. The total volume from r to s is q = 6
units of flow. The mode share between transit and automobile is given by the
following logit model:

s 1
,sL 1 + el +tbU

where u,, is the (auto) origin-destination travel time at equilibrium. The
questions of interest involve the link (automobile and transit) flows at equilibri-
um.
(a) Does this problem have a unique solution? Explain.
(b) Can this problem be formulated as an equivalent minimization program?

Explain.
(c) Apply an algorithmic procedure and solve for the equilibrium flows. Show

the results of all the intermediate iterations. Check that the final solution
complies with the equilibrium equations.

9.10. Explain the features of transit route selection which make it difficult to represent
this process as a minimum-path choice.

9.11. Consider the problem of a joint mode split/traffic assignment problem with
non-UE transit assignment. The transit travel times are assumed to be a func-
tion of both transit and automobile flows.
(a) How would you model the problem if the automobile travel times are a

function of the flow of transit patrons (as well as the automobile flow)?
(b) How would the problem be solved if the automobile links interact with each

other in addition to the transit-automobile interactions?

9.12. Program [9.19] can be solved with a double-stage algorithm (similar to the one
explained in Chapter 7). Describe the application of such an algorithm in the
context of a diagonalization algorithm for solving joint mode split/traffic assign-
ment problems with non-UE transit assignment.

9.13. Consider the network discussed in Problem 9.7 (shown in Figure 9.2). Assume,

I _

258

Chap. 9 Supernetworks-Models of Joint Travel Choices

however, that the O-D volume is not given but rather is determined by the
function

100
q = D(t) =-- 1

where t is the automobile travel time. How would you find the equilibrium flows
in such a network? Apply the diagonalization algorithm and show the inter-
mediate results.

9.14. Formulate the joint mode split/trip distribution/traffic assignment problem in
the case where the transit travel time is a function of the automobile traffic (as
well as the transit flow), assuming that the modal interaction is asymmetric. Use
the following trip distribution model:

Or e - Y(u" + Frs MB,.)q"S = e -(u. + a,- M,)
(compare this model to the one given in Eq. [9.22]). Note that in this case both
{ur} and {,,r} are a function of x [i.e., u, = u,s(X) and t,, = i,(x, x), V r, s].

9.15. (a) Formulate the mathematical program which has to be solved at the nth
iteration, if the diagonalization approach is applied to the problem of joint
modal split, trip distribution, and traffic assignment with variable demand.
Use logit modal split and trip distribution formulas and a general term for
the trip generation model, as done in Section 9.2.

(b) Describe the application of the convex combinations algorithm to the solu-
tion of this program.

(c) Describe the application of a multistage approach to the calculation of the
descent direction for the problem in part (a).

9.16. The traditional "four steps" transportation planning process includes an inde-
pendent analysis of trip generation, trip distribution, mode split, and traffic
assignment. Each step includes its own methodology and its output is used to
conduct the other analyses in a sequential manner. Compare this planning pro-
cess to the supernetwork approach described in Section 9.2. Use examples of
planning problems in your discussion.

_�___ __

259

�I �

IV

Stochastic

-

The behavioral mechanism underlying the traffic assignment model is a choice, or
decision-making process. Motorists traveling between origins and estinations
choose the path on which to travel.

The deterministic approach to traffic assignment assumes that travelers
choose the least cost, shortest, or minimum-travel-time path from their origin to
their destination. This behavioral assumption is the core of the user-equilibrium
(UE) conditions, which characterize the solution to all the traffic assignment prob-
lems described in Parts II and Ill. Although this assumption may not seem unrea-
sonable, it presumes that all travelers have perfect information regarding travel time
over the entire network, that they make consistently correct decisions, and that
they all behave in identical fashion.

Part IV relaxes some of these presumptions by including a random compo-
nent in travelers' perception of travel time. Route selection is then analyzed by
applying discrete choice models to this process. These models are based on the
concepts of utility maximization and random utility, and are used in many dis-
ciplines to model individuals' choices among a finite set of discrete options. The
general form of these models is introduced in Chapter 10, which also applies the
models to the route choice problem. Chapter 11 introduces two specific route-
choice model forms and discusses algorithms for implementing these models. The
stochastic nature of the travel times and the dependence of these times on the
vehicular flows are combined in Chapter 12 in a stochastic equilibrium model.

261

This chapter formulates the route-choice as a process of selection among
alternative paths, on which the travel time is random. The formulation is
based on the theory of discrete choice models, which describe individuals'
choices between competing alternatives. The focus in this book is on travel
alternatives such as the available paths from an origin to a destination, alter-
native modes of transportation, or alternative destinations which could be
visited.

The relevant underlying theory and the two most commonly used dis-
crete choice models are introduced in Section 10.1. This section concentrates
on the formulation of the models and their relationship to the behavioral
concept of utility maximization. Section 10.2 shows how these models can be
applied to calculate the flow assigned to each path connecting an origin and a
destination in a transportation network.

10.1 REVIEW OF DISCRETE CHOICE MODELS

The hypothesis underlying discrete choice models is that when faced with a
choice situation, an individual's preferences toward each alternative can be
described by an "attractiveness" or "utility" measure associated with each
alternative. This utility is a function of the attributes of the alternatives as well
as the decision maker's characteristics. The decision maker is assumed to
choose the alternative that yields the highest utility. Utilities, however, cannot
be observed or measured directly. Furthermore, many of the attributes that

262

1� _ _

v

Chap. 10 Discrete Choice Models and Traffic Assignment

influence individuals' utilities cannot be observed and must therefore be treat-
ed as random. Consequently, the utilities themselves are modeled as random,
meaning that choice models can give only the probability with which alter-
natives are chosen, not the choice itself.

This section presents some of the basic concepts associated with discrete
choice models (which are also known as random utility models). It deals with
the notions of a choice function, a satisfaction function, and the application of
discrete choice models to populations with heterogeneous characteristics.
These issues are discussed in general as well as in relation to two specific
discrete choice model forms: the multinomial logit and the multinomial probit.

Choice Function

Let U = (U, ... , UK) denote the vector of utilities associated with a
given set of alternatives, --Y. This set includes K alternatives numbered
1, 2, ... , K. The utility of each alternative to a specific decision maker can be
expressed as a function of the observed attributes of the alternatives and the
observed characteristics of this decision maker. Let a denote the vector of
variables which include these characteristics and attributes. Thus Uk = Uk(a).
To incorporate the effects of unobserved attributes and characteristics, the
utility of each alternative is expressed as a random variable consisting of a
systematic (deterministic) component, Vk(a), and an additive random "error
term", k(a), that is,

Uk(a) = Vk(a) + Jk(a) V k E -X [10.1]

The random component of the utility satisfies E[Nk(a)] = 0, meaning that
E[Uk(a)] = Vk(a). In this context, Uk(a) is sometimes referred to as the "per-
ceived utility" and Vk(a) as the "measured utility."t

The utility functions usually include a set of parameters that are statis-
tically estimated from individuals' observed choices, as explained in Chapter
13. For now, assume that the values of these parameters are known and thus
Uk changes only with a.

Given the distribution of possible utility values, the probability that a
particular alternative will be chosen by a decision maker, who is randomly
selected from a given population, can be calculated. The distribution of the
utilities is a function of the attribute vector, a. Therefore, the probability that
alternative k (where k e A) will be chosen, Pk, can be related to a. The
function relating Pk to a is known as the choice function and is denoted by
Pk(a). The probability that alternative k is chosen, given a, should be under-
stood as the fraction of individuals in a large population, all members of which
are characterized by a, who choose alternative k. The choice probability is

tUk can be viewed as the utility of the kth alternative as perceived by the decision maker
while Vk can be viewed as the utility of this alternative as measured by the analyst.

· I _ I� _ __ ___I

263

Part IV Stochastic User Equilibrium

then the probability that Uk(a) is higher than the utility of any other alter-
native (given a) and

Pk(a) = Pr [Uk(a) > U1(a), V 1 E X] V k Xo[[10.2]

The choice function, Pk(a), has all the properties of an element of a probability
mass function, that is,

0 < P(a) < 1 V k E X [10.3a]
K

E Pk(a)= 1 [10.3b]
k=1

Once the distribution of the error term, k, is specified, the distribution
of the utilities can be determined, and the choice function can be calculated
explicitly. Consider, for example, a choice situation in which only two alter-
natives are available. The utility of the first alternative is U1 = 3 + and the
utility of the second alternative is U2 = 2. In this case all parameters and
characteristics are known and fixed. The probability that the first alternative
will be chosen, P1 , is

P1 = Pr (U1 > U2) = Pr (3 + 2 2)

=Pr (- 1) [10.4]
Assume now that the density of ~ is uniform between -2 and 2, that is,

I for -2• co •2
Pr (co~ < < co + do) = 4 f -2< < [10.5]-o c~- 1 0 otherwise

where co is any real number. Given this distribution, the choice probability
expressed by Eq. [10.4] is P1 = 0.75, implying that P2 = 0.25. This example
demonstrates the nature of the choice probability; 75% of all individuals for
whom the utility functions are specified as above will choose alternative 1,
according to this model. If, for some other population of individuals, U1

remains unchanged and U3 = 3 (instead of 2), the choice probability of the
first alternative, P1 , will be 0.5 (assuming that the distribution of ~ does not
change). In other words, half of the new population will choose alternative 1.
The choice probability thus depends on the characteristics (captured by the
vector a) of the utility functions, as well as on the distribution of the random
component.

The following two sections discuss two specific discrete choice models,
arising from two different specifications of the error term. These are the logit
and the probit models.

Multinomial Logit

One of the most widely used discrete choice models is the logit model.
The logit formula was presented in Chapters 6, 7, and 9 both as a modal split
and as a trip distribution model. In those contexts it was presented as an

__

264

Chap. 10 Discrete Choice Models and Traffic Assignment

aggregate share formula giving the total number of individuals selecting a
particular travel alternative. This model, however, can be derived from the
concepts of random utility and utility maximization by assuming that the
random terms of each utility function are independently and identically dis-
tributed Gumbel variates.t The choice probability is then given by

eVk

Pk = K ¥ k E . [10.6a]
E eV

/=1

where the dependence of Pk and Vk on a is omitted from the notation for
clarity of presentation. The choice probability of a given alternative can be
expressed as a function of the difference between the measured utilities of that
and all other alternatives. To see this, divide the right-hand side of Eq. [10.6a]
by ea to obtain

= 1 + E eVI- v [10.6b]
I*k

In the case of binary logit, that is, when there are only two alternatives
(indexed k = 1 and k = 2), the model can be written as

eVl 1

P1 = erl + eV2 = 1 + e 2- VI [10.7a]

and, of course,

P2 = 1 - + e -v 2 [10.7b]

Consider, for example, a bus/automobile logit mode choice model, where the
utilities of the two alternative modes have been specified as follows:

Ubus = Vbus + 5 [10.8a]

where VbU,(t) = -2t, and

Uauto = Vauto + ¢ [10.8b]

where Vuto(t) = 1 - 2t. The variables of interest in this example are t and t, the
transit and automobile travel time, respectively. The probability of choosing
the automobile mode (see Eq. [10.7a]),

1 1
Paut(t t) = 1 + eVbu-Vauto = 1 + e-1- 2 (-t) [10.9]

tThe cumulative Gumbel distribution function is given by

F(w) = Pr (ck < o) = e-'- ...

where o is any real number and E is Euler's constant (i.e., E = 0.5708..).

_ · _..__

265

Part IV Stochastic User Equilibrium

PAUt O

1.0

.8-

.4-

.2-

-3 -2 -1 0 1 2 3 [i-t)

Figure 10.1 Logit-based automobile choice function (see Eq. [10.9]).

Figure 10.1 illustrates the automobile choice function, Pauto(t, t, versus the
difference (- t). Given t and t (or merely their difference), the model gives the
share of all individuals in the population under study, choosing the automo-
bile alternative. If the size of this population is known, the number of individ-
uals choosing each mode can be determined.

The logit formula is easy to use in the multinomial case (see Eq. [10.6a])
as well. This, in fact, is the main advantage of the logit as compared with
other, more sophisticated discrete choice models.

Multinomial Probit

Following many other statistical models, it may be natural to assume
that the random error term of each utility is normally distributed. This is the
underlying assumption of the probit model which is based on the postulate
that the joint density function of these error terms is the multivariate normal
(MVN) function.

The MVN distribution is the multinomial extension of the well-known
normal density function. It describes the distribution of a random vector,

= (1 -, (K). This distribution is characterized by a (K-length) vector of
means, , and a (K x K) covariance matrix, E. The notation , - MVN (, E)
indicates that the vector , is MVN distributed with mean vector P and covari-
ance matrix E. The covariance matrix includes the variances of the compo-
nents of the random vector, and the covariances between these components,
that is,

(Y)kk = var (k) V k and)kl = cov (k,) V k 1 [10.10]

The appendix describes some of the properties of MVN distributions which
are important for probit analysis. As shown there, this distribution conserves
its shape under linear transformation, meaning, for example, that the sum (as
well as the difference) of two normal variates is normally distributed. Given a
covariance matrix (associated with the randomness in the perception of a set of
alternatives) and a vector of known alternatives' attributes, the distribution of

266

� I I -

Chap. 10 Discrete Choice Models and Traffic Assignment

the utility vector, U(a)= [U(a), ... , UK(a)], can be modeled as multivariate
normal; in other words,t

U(a)- MVN [V(a), .] [10.11]

As with any discrete choice model, the probability that a particular
alternative will be chosen is given by the probability that its utility is the
highest in the choice set (see Eq. [10.2]). With probit models, however, this
choice probability cannot be expressed analytically since the cumulative
normal distribution function cannot be evaluated in closed form. In the case of
a two-alternative (i.e., binary) model, however, the choice probabilities can be
computed by referring to cumulative normal tables, as shown below.

To demonstrate the computation of a choice probability in the binary
case, assume that U = (Ul, U2) where U1 = V1 + id and U2 = V2 + 2. The
distribution of the error term vector is given by

4 MVN (0, L)

where , = (x, ~2), 0 is a vector of zeros, (0, 0), and

a1 a 1 2

21 a2

Now (from Eq. [10.2]), the probability of choosing the first alternative is given
by

Pt = Pr [(U1 > U2) = Pr [(VI + Xl) 2 (V2 + 2)]

= Pr [(2 - 1) < (V - V2)] [10.12a]

Due to the shape-conserving characteristics of the MVN distribution, (2 - 1)

is a normally distributed random variable, with mean zero and variance a2 =
a2 + a - 2a12. Using the standard normal transformation, Eq. [10.12a]
implies that

P, = (V2 - [10.12b]

where 4(.) is the standard cumulative normal curve. Once the values of V,
V2 , and a are given, the value of P1 can be found by referring to a standard
normal distribution table.

The calculation of the probit choice probability, in the presence of more
than two alternatives is not straightforward. The choice probability can be
estimated by using either an analytical approximation or a Monte Carlo
simulation. These two approaches are outlined below.

The literature suggests several analytical approximation methods for
computing the probit choice probabilities. These include numerical integration

tIn general, the elements of the covariance matrix can be a function of a [in which case
E = EI(a)]. This book, however, deals only with probit models in which this is not the case.

____ ____. ____

267

Part IV Stochastic User Equilibrium

algorithms as well as a successive approximations method. The numerical inte-
gration methods try to solve directly for the choice probability. This leads to a
multiple integral expressing the cumulative distribution function of the util-
ities. This integral is then solved numerically.

The successive approximations method is based on the approximation of
the distribution of the maximum of two normally distributed random variables
as another normal variable. Given a set of normally distributed utilities, this
approximation can be applied iteratively. Consider, for example, the compu-
tation of the choice probability of alternative k (this equals the probability that
Uk 2 Ul, V). At each iteration, two random utilities are considered and an
auxiliary random variable, equivalent to the maximum of these two, is created.
The next iteration consists of calculating a new auxiliary variable which is the
maximum of the former auxiliary variable and another utility variable. The
new auxiliary variable replaces the old one and the process continues. Uk is
considered last. At that point the auxiliary variable approximates the distri-
bution of the maximum of all the alternatives' utilities (excluding k). The
choice probability is, then,

Pk = Pr Uk max {U}) [10.13]

which is equivalent to the probability that Uk is greater than or equal to all U
(for k). Equation [10.13] includes only two random variables (Uk and
maxv *k {U1)) and Pk can, therefore, be computed as before (see Eq. [10.12b]).
This approximation (known as Clark's method) is described in detail in the
Appendix.

None of the analytical approximation methods can be practically applied
to problems involving a large number of alternative choices. The numerical
integration method cannot be applied to problems involving more than four
or five alternatives due to prohibitive computational costs. The successive
approximations can be applied to somewhat larger problems but, again, it
would involve prohibitive computational costs for problems of the size en-
countered in network analysis. Furthermore, the accuracy of this method de-
teriorates as the number of alternatives increases.

Another approach to the computation of the probit choice probabilities
is based on a Monte Carlo simulation procedure. The simulation method can
be applied to the computation of the choice function of any discrete choice
model as shown here. To describe the technique, consider a set of utility
functions: Uk = Vk + k, V k E Yf'. Given the values of V = (V1, ... , VK), the
simulation works iteratively as follows: A vector comprising K random vari-
ables is drawn at every iteration from the density function of . Denote the
drawings generated in the nth iteration by ', ... , "X. The perceived utility of
each alternative can now be computed by adding the systematic utility, Vk, to
the (drawn) random term 5;, that is, U = Vk + ~, V k. Next, the maximum
utility alternative (i.e., the alternative for which U 2 U', V) is recorded. This
process is repeated N times. Denoting the number of times that each alter-

1 .

268

Chap. 10 Discrete Choice Models and Traffic Assignment

native k was recorded (as the maximum utility one) by Nk, the choice prob-
ability of the kth alternative, Pk, is given by

Nk
Pk Nk [10.14]N

where, at the limit (as N -, or), Pk = Nk/N. This technique is particularly
useful for network analysis, as shown in Chapter 11.

The Satisfaction Function

The focus of the first part of this section was on the choice function and
the computation of the choice probability. Another important quantity related
to discrete choice models is the satisfaction, S, and the satisfaction function,
(a). The satisfaction is a scalar, which captures the expected utility that an

individual (decision-maker) derives from a set of alternatives, X, each with
utility Uk. Since each individual is assumed to select the alternative with the
maximum utility, the satisfaction is simply the expectation of the maximum
utility alternative. In other words,

S= E[max {Uk}] [10.15a]
V k

where the expectation is taken with respect to the distribution of U (which is,
of course, derived from the distribution of E). The satisfaction can be expressed
as a function of the vector a and the quantity (a) is known as the satisfaction
function. Given that V = V(a) and given the distribution of [, the satisfaction
can also be expressed as a function of the vector of measured utilities, V, that
is,t

(V)= E[max {Vk + k} [10.15b]

The satisfaction function, (V), has three important properties:

1. It is convex with respect to V. Furthermore, for the discrete choice
models discussed in this text (where the choice probability is positive for
all finite values of V), the satisfaction function is also strictly convex.

2. The partial derivative of the satisfaction function with respect to the
systematic utility of an alternative, equals the choice probability of that
alternative, that is,

0(v)
av Pk(V) k -' [10.16a]

3. The satisfaction is monotonic with respect to the size of the choice set,
that is,

(V ... I V , VcK+1) > S(V1, *... VK) [10.16b]

tThis, of course, holds also for the choice probability Pk(V) = Pk[V(a)l.

___... ^_ ._.__

269

Part IV Stochastic User Equilibrium

The first property of the satisfaction function stems directly from the
convexity of the maximum operator (see Problem 10.4). The second property
holds only under certain regularity conditions,t which are satisfied by all the
models discussed in this book. It can be proved directly from the definitions of
the satisfaction and the choice function (see Problem 10.5). The third property
holds only for noninteracting alternatives (i.e., if the introduction of the extra
alternative does not decrease the measured utility of any other alternative).
Under these conditions, this property can, again, be proved on the basis of the
definition of the satisfaction function and the properties of the maximization
operator (see Problem 10.6).

For logit models, the form of the satisfaction function can be explicitly
derived from the second property above (Eq. [10.16a]). Given that

Of~(V)= ev~ ~[10.17a]
-k) _ eVk

The satisfaction function is

s(V) = In e [10.17b]

The integration constant in this case is zero, since a proper boundary con-
dition for Eq. [10.17a] is that S(V) = Vk in case V-- -co, V I # k. In this case
the kth alternative is the only reasonable one and the satisfaction equals the
expected utility of the kth alternative. Equation [10.17b] can also be derived
directly from the definition of the satisfaction (Eq. [10.15b]).

For probit models, the satisfaction cannot be expressed analytically.
Using Clark's approximation, however, (V) can be calculated by simply
carrying the successive approximations process one more step, to include the
last utility function (Uk-see the discussion preceding Eq. [10.13], and the
Appendix.) This results in an auxiliary variable which is the maximum utility
of the entire set of alternatives. The mean of this variable is the satisfaction.

The satisfaction can also be calculated by using Monte Carlo simulation.
To do this, the utility of the chosen alternative, U", has to be recorded at every
iteration (U" = max,, {U?}). The satisfaction is then given by

1 N
- n>lU" [10.18]N 1

where N is the number of iterations (drawings).

Aggregate Predictions

The choice function relates the choice probability to a set of variables, a.
Some of the variables in the vector a represent characteristics (such as income)
which vary from one individual to another. Thus a is distributed across a

tThese regularity conditions require that the shape of the utilities density function not
depend on the measured utilities. Note that probit models in which E L(a) do meet these
regularity conditions.

__ _ __ __�

270

Chap. 10 Discrete Choice Models and Traffic Assignment

given population of decision makers according to some density function, f(a).
Given the choice function of alternative k, Pk(a), the share of the population
under study who choose alternative k is given by

Pk = Pk(a)f(a) da [10.19]

This is a multiple integral that may be difficult to evaluate. It is the expecta-
tion of Pk(a) with respect to the (multivariate) distribution of a (i.e., E,[Pk(a)]).

This integral can be approximated by dividing the population into
groups of similar values of a, computing Pk(a) for each group, and averaging
the results. Alternatively, Pk(a) can be computed by Monte Carlo simulation.
Such an approach includes drawing random values of a from f(a), computing
Pk(a) for each one, and averaging the results. The issue of aggregate predic-
tions is of secondary importance in network analysis. In this type of analysis
the choice models do not typically include attributes that vary across individ-
uals, and thus the aggregation problem does not arise. This is the reason that
the modal split and trip distribution models presented in previous chapters
can be considered as mode choice and destination choice models, respectively.
Had these models included variables that vary across individuals, the analysis
given in those chapters would have required that these models be appropri-
ately aggregated. Such an aggregation would have added a significant compu-
tational burden to the equilibrium algorithms.

10.2 STOCHASTIC NETWORK LOADING

The UE model discussed in Parts II and III assumes that each individual
follows the path with the shortest travel-time from origin to destination. Thus
the network loading mechanism underlying the UE assignment can be mod-
eled by an all-or-nothing assignment process, in which all the flow between
each origin and destination is assigned to the shortest-travel-time path con-
necting this pair. The UE model results from the coupling of this assumption
with the dependence between travel time and flow.

This section uses the notions of choice models reviewed in Section 10.1
to formulate a network loading mechanism that is more general than the
all-or-nothing assignment. This model views the route choice in the general
framework of random utility theory and discrete choice models. The focus of
this section is on the network loading mechanism, which, in this case, is
referred to as stochastic network loading. The dependence of link travel time
on link flows (which underlies the equilibrium issue) is not treated here in
order to concentrate on network loading when the path times are random.
Equilibrium effects in conjunction with stochastic network loading are exam-
ined in Chapter 12.

This section includes four topics, each discussed separately. The first part
of this section derives the stochastic network loading model from the process

__._

271

Part IV Stochastic User Equilibrium

of route choice. The second part introduces a stochastic network paradox,
which parallels, to some extent, Braess's paradox discussed in Chapter 5. The
nature of the stochastic assignment paradox is explained in the third part,
through the notion of the expected minimum travel time. The last part of this
section examines the nature of the network flow in more detail under the
assumptions of a stochastic network loading model.

Route Choice

Consider a population of drivers who are about to take a trip between a
given origin and a given destination. The O-D pair under consideration is
connected by many alternative paths, each associated with some travel time.
Due to variations in perception and exogenous factors (such as weather, light-
ing, etc.) the path times are perceived differently by each driver. It is natural,
then, to model the perceived travel time of each path as a random variable
distributed across the population of drivers. Given his or her perception of
travel time, each driver is assumed to choose the shortest travel time path from
origin to destination. Each driver, however, will perceive path times differently,
and therefore each driver may choose a different path. Since the perceived
travel time of each path is a random variable, it is associated with some
probability density function. This function gives the probability that a driver
randomly drawn from the population will associate a given travel time with
that path. The stochastic network loading problem is to determine, based on
this distribution, how many travelers will use each path.t The link flows can
be obtained from the paths' flow by the incidence relationships (Eq. [3.lb]).

To treat this problem analytically, let C s represent the perceived travel
time on route k between origin r and destination s, where k E .cr,. C' is a
random variable. Also, let c"s be the measured, or actual travel time on route k
between r and s. Assume now that

Ck = ck + ks V k, r, s [10.20]

where ' is a random error term associated with the route under consider-
ation. Furthermore, assume that E[`] = 0, or E[C,] = c,. In other words,
the average perceived travel time is the actual travel time. (The average travel
time can be interpreted as the travel time used in the deterministic analysis of
Parts II and III.) If the population of drivers between r and s is large, the share
of drivers choosing the kth route, Pr, is given by

P, = Pr (Cr < Cl, V I E .,5) V k, r, s [10.21]

In other words, the probability that a given route is chosen is the probability
that its travel time is perceived to be the lowest of all the alternative routes.

tA stochastic network loading model can also be derived from the assumption that link
travel times are inherently random. Each driver is then assumed to select paths on the basis of
experience that may vary from driver to driver due, for example, to small differences in trip
timing.

I _

272

Chap. 10 Discrete Choice Models and Traffic Assignment

ROUTE 1

Figure 10.2 Network example with one
O-D pair and two routes. ROUTE 2

Equation [10.21] specifies a route-choice probability that can be inter-
preted in the framework of discrete choice models. The population of interest
equals the trip rate from origin r to destination s. Each path, k, is an alter-
native associated with some utility function U. The utility of each alternative
(path) equals the negative path cost (i.e., U"s = -Ck) since it is assumed here
that the travel time is the only determinant of route choice.t The utility
maximization principle then implies Eq. [10.21]. The alternative with the high-
est (perceived) utility is the alternative with the lowest perceived travel time.

The various models for stochastic network loading differ from each other
in the assumed distribution of the perceived travel times. Once this distri-
bution is specified, the probability of selecting each alternative route can be
calculated and the flow assigned accordingly. The path flow assignment then
will be

fs = q.p1 s V k, r, s [10.22a]

where P'k is the route-choice probability given by Eq. [10.21]. The link flows
can then be calculated as

xa = E Ef~'s k V a [10.22b]
rs k

One of the practical reasons for using stochastic network loading models
is the sensitivity of the flows in deterministic models to small changes in the
network. Consider, for example, the small network in Figure 10.2. This net-
work includes two paths, the travel times on which are t and t2 , connecting a
single O-D pair. According to a deterministic network loading model, all the
flow from the origin to the destination (q) should be assigned to the lowest-
travel-time path. If, for example, c1 = c 2 + At, then fi = 0 and f 2 = q even if
At-+ 0 (i.e., if the travel times are very close to each other). Each path in this
network, however, may include various transportation facilities (such as
bridges, intersections, etc.). A small error in the data measurement for any one
of these facilities may cause a situation in which c < c2 by a small amount.
Such a change, however, would mean that the calculated flow pattern over the
network will be completely different withf, = q andf 2 = 0.

Stochastic network loading models usually avoid such sensitivities. The

tThis framework can be generalized, as in the deterministic case, by replacing the travel
time with a measure of general travel impedance or disutility. Note also that a unit scaling factor
between travel time units and utility "units" can be introduced without affecting the problem. In
other words, U[' can be defined to equal - OC's where 0 is a (positive) unit scaling parameter.

_

273

Part IV Stochastic User Equilibrium

P1

1.0

0.5

LOW VARIANCE

VARIANCE

LARGE VARIANCE

0 C 2 -C 1

Figure 10.3 Effect of the variance of the paths' perceived travel-time distribution
on the flow pattern for the network example depicted in Figure 10.2.

probability that route 1 is chosen will be approximately 0.50, if c1 - c 2 . A
small change in the network representation may mean that the share of a
given route may change from just under 50% to just over 50% of the total
O-D flow. Thus a small change in the travel times results in a small change in
the flow pattern. The exact magnitude of the change in flow will depend on the
variance of the distribution of the path travel times. Figure 10.3 demonstrates
the effect of the travel time distribution variance on the flow pattern for the
network in Figure 10.2. It describes the choice probability of route 1, P1 , as a
function of the difference among the routes' measured travel times, c 2 - c1 , for
various values of the travel-time variance.

All the curves shown in the figure depict an increase in P1 as (c2 - c)
increases (i.e., as c becomes smaller, relative to c2). For very low variance, the
curve is very steep, meaning that travelers perceive the differences between c1
and c 2 accurately and act accordingly. In fact, if the variance is zero, P1 = 0
for (c2 - c) < 0 and P1 = 1 for (c2 - c1) > 0. This is the route-choice behav-
ior associated with the deterministic model in which the drivers' perception of
the travel times is assumed to be perfectly accurate. In a deterministic (all-or-
nothing) model, all users will be assigned to the shortest (measured) travel-time
path from their origin to their destination.

If the variance is larger, the change in the choice probability is more
moderate since the perception of travel times is less accurate. At the limit,
when the variance is extremely large, the actual travel times do not affect the
perception, which is completely random. In this case P1 = 0.5 for any value of
(c 2 - c), as shown in the figure. The actual magnitude of the perception
variance should be determined empirically on a case-by-case basis. There is no
reason, however, to think a priori that it will be zero, as implied by the
deterministic approach.t

tAs it turns out, this variance tends to be relatively small in practice. Furthermore, under
some conditions, deterministic equilibrium models provide a good approximation for stochastic
ones, as shown in Chapter 12.

_ _ � __I · __��__ __ __ __

274

Chap. 10 Discrete Choice Models and Traffic Assignment

Another Paradox of Traffic Flow

Section 5.5 showed that under certain conditions, network improvement
(such as link additions) can result in an overall increase in transportation costs
(or travel times). This phenomenon, known as Braess's paradox, can readily be
explained on the basis of the difference between the UE flow pattern and the
system-optimizing flow pattern. Thus, although counterintuitive, this phenom-
enon is not quite a paradox.

Braess's paradox occurs only in networks where travel times are flow
dependent. If this is not the case, the UE flow pattern will be identical to the
system-optimizing flow pattern and this (pseudo) paradox will not take place.
This section discusses a similar counterintuitive phenomenon which arises in
the context of stochastic network loading models. This phenomenon is not
rooted in the dependence of the links' travel time on the flow but in the
stochastic nature of the loading model, that is, in the randomness of the
perceived path travel times. If the variance of the travel time is zero,
the stochastic network loading is equivalent to a deterministic one, and the
paradox discussed here will not arise.

The paradox under consideration can be demonstrated by using the
simple two-path network shown in Figure 10.2. Again, assume that the mea-
sured travel times on route 1 and route 2 are c and c 2 , respectively, and
similarly, the perceived travel times on these routes are C1 and C2 . The O-D
trip rate is q units of flow. If the mean path travel times, c = (c1, c2), are fixed,
the flow on route 1,f1 , is given by

fi = qP1(c) [10.23a]

where Pl(c) = Pr (C1 < C2), is the probability that route 1 will be chosen by a
motorist who is randomly drawn from the population of q drivers. The flow on
route 2,f 2 , is given by

f2 = qP2(c) = q[1 - P(c)] [10.23b]

The total travel time in the system, CT, is

CTr() = Clf1 + c2f2

= q[(c1Pl(c) + c2 P2(c)] [10.24]

To illustrate the paradox numerically, assume that cl = 4.0, c 2 = 2.0, and
q= 1.0 in some appropriate units. Assume further that the choice model is
given by the logit-like function

P1 + eC - C 2

The flows in this case aref, = 0.119 and f2 = 0.881. The total travel time is

CT = 0.119 x 4.0 + 0.881 x 2.0 = 2.238 (flow time) units

_ _.___·_

275

Part IV Stochastic User Equilibrium

Consider now an improvement of route 1 which reduces the travel time on this
route from 4.0 time units to 3.0 time units. The flows in this case would be
f = 0.269 andf 2 = 0.731, with the total travel time being

CT = 0.269 x 3.0 + 0.731 x 2.0 = 2.269 (flow time) units

The total travel time, CT, increased in this case even though one of the links
was improved (!).

The numbers used in this example can be generalized for any route-
choice model (see Eqs. [10.23]) and any values of c, c2 , and q as follows.
Given Eq. [10.24], consider the effect of a small improvement in the actual
travel time of route 1, c, on the total travel time in the system, c(c). This
marginal effect can be expressed as the partial derivative of CT(C) with respect
to c,. The derivative is

acT(C) [aP,(c) + aP2(c) [10.25a]
~ - q ct ~c+ PI(c) +c2 [10.25a]

This equation can be simplified since P2 = 1 - P, meaning that aP2 (c)/acl =

- OP(c)/@cl. Equation [10.25a] can therefore be written as

ac(c) (c -C2) aP1(c)+p(] [10.25b]

If network improvements (such as a reduction in c) result in a decrease in the
total travel time, aCT(C)/aOC should be positive. For this derivative to be posi-
tive, the following condition should hold:

OP1 (c)
(c1 - C2) > -Pl(C)

Dc

or

Pt(c)
(cl - c 2) < [10.26a]

OP (c)/cl

The inequality sign is reversed in the last expression since P1 (c)/acl is a
negative quantity; the probability of choosing a particular alternative de-
creases as its travel time increases. Consequently, the right-hand side of Eq.
[10.26a] is a positive constant for any value of c. Letting K(c) denote this
constant, Eq. [10.26a] can be rewritten as

cx - c2 < K(c) [10.26b]

Only if this condition is met does the total travel time decrease as c1 is slightly
decreased. If c > c2 + K(c), a small improvement in c will result in an in-
crease in the total travel time, as happened in the numerical example above.
Again, a counterintuitive phenomenon.

This "paradox" occurs when an inferior travel alternative is marginally
improved. In the example under consideration, the paradox will occur when c1

is reduced only if it was considerably larger than c2 to begin with (in which

___ __I _I_ _ __ __ __ __ __ � __1�_ ____

276

Chap. 10 Discrete Choice Models and Traffic Assignment

case Eq. [10.26b] would not hold). Note that this was the case with the
numerical example above. Because of the nonlinearity of the route choice
model, "too many" travelers shift to the improved facility, even though it is
still an inferior alternative, and consequently the total travel time in the system
increases. Obviously, this paradox will not arise when an alternative that is
better to start with is improved, since this will only cause more travelers to use
the faster route and the total travel time will decrease. This can also be seen
from Eq. [10.25b], which implies that when c < c2 , ac(c)/c is always non-
negative (since OaP(c)/c, < 0).

This example illustrates how the total travel time in the system may
increase when a component of the network is improved. As in Braess's para-
dox, the total travel time may also increase when a new link is added to the
network. This case is illustrated in Figure 10.4, which depicts a network of four
links, each with actual (measured) travel time of 1 unit (see Fig 10.4a). These
four links form two paths between the origin and the destination. The mea-
sured travel time on these paths is c = c2 = 2 time units. The addition of the
center link (with measured travel time of 0.1 units) in Figure 10.4b provides
one additional (longer) path from the origin to the destination thereby seem-
ingly improving the network. (The range of choices available to travelers
between O and D is larger than before.) Due to the stochastic nature of the
problem, however, the model is bound to assign some motorists to the longer
path and the total system travel time will therefore increase. For example, in
Figure 10.4b, the new average travel time will be between 2.0 and 2.1 units of
time per traveler, as compared with 2.0 units before the introduction of the
new link. The total travel time will increase accordingly.

In both examples considered here (the one depicted in Figure 10.2 and
the one depicted in Figure 10.4), the total travel time in the network increased
when the network was seemingly improved. If the users of the system were
interviewed, however, they would have all been reporting an improvement in
the travel time (!). Thus the travel time as travelers perceive it did decrease
even though the total measured time increased as a result of the improvement.
The situation is reminiscent of Braess's paradox in which, even though the
system-optimizing objective function increased when a link was added, the UE

[a] (b)

Figure 10.4 Stochastic network loading
paradox: (a) a network with two equal
travel-time paths connecting a single
O-D pair; (b) a third path with higher
travel time is added, causing the total net-
work time to increase. (The numbers on
the links indicate expected link travel
times.)

_ __..___

277

Part IV Stochastic User Equilibrium

objective function had decreased. In the problem discussed here there is also
"something that decreases" even though the total measured travel time in-
creases. This "something" is the expected total perceived travel time, which
parallels the satisfaction concept mentioned in the preceding section. The fol-
lowing section presents this quantity, which plays a major role in stochastic
assignment models.

The Expected Perceived Travel Time

Route choice models can be viewed as discrete choice models in which
the utility of traveling over a given path, U, is given by

U s = -OC s [10.27]

where 0 is a (positive) unit scaling parameter. (See the discussion following Eq.
[10.21] and the related footnote.) The satisfaction function for a (utility maxi-
mization) model of choice between the alternative paths connecting O-D pair
r-s, r,(c'), is given by (see Eq. [10.15])

Ss = E[max {us}] [10.28]
k E Jr,

The emphasis in route-choice models, however, is on cost, impedance, or
travel-time minimization rather than utility maximization. Let, then, S,,(c")

denote the expected perceived travel time between origin r and destination s.
In other words,

Srs(Cre) = E[min {C}] [10.29]

The relationship between S,(c r') and the satisfaction function, g,(), can be
derived by substituting Cks = (-1/)Ur, (see Eq. [10.27]) in Eq. [10.29], that is,

Srs(c) = E[min {- uk}]

= - E[max {Ur}J = - rsg(C) [10.30]

The expected perceived travel time function, then, is minus the satisfaction
function, scaled in travel time units. It captures the expected disutility of travel
between O-D pair r-s (measured in travel-time units) as perceived by a ran-
domly selected motorist. (This motorist is randomly selected from the q,,
motorists going from r to s.) The total expected perceived travel time between
O-D pair r-s is qrs Sr(c's).

The properties of the expected perceived travel time are similar to those
of the satisfaction except for its orientation toward travel-time minimization
rather than utility maximization. Thus S,,(crs) is concave with respect to c.
Furthermore, as with the satisfaction function, the marginal expected per-

I

278

Chap. 10 Discrete Choice Models and Traffic Assignment

ceived travel time of O-D pair r-s, with respect to c, is the. probability of
choosing that route, that is,

aSr.(Crs)asdc = P(cr") [10.31a]
Oc7

where P(crs) is the probability that the travel time on route k between r and s
is smaller than the travel time on any other route between r and s. Finally,
S,,(c's) is monotonic with respect to the number of available paths between r
and s, that is,

Sr,(cr, c) < Sr(ces) [10.31b]

where the vector of paths times, c" , does not include the measured travel time
on path 1, cIS. Equations [10.31] follow directly from the second and third
properties of the satisfaction function stated in Eqs. [10.16].

The paradoxes presented in the preceding section can now be readily
explained by considering the expected perceived travel-time concept. The ex-
pected perceived travel time will always decrease (or at least will never in-
crease) when the network is improved since motorists, in the stochastic loading
model, are assumed to minimize their perceived travel time. To see this note
that the derivative of S,,(ce) with respect to the measured travel time on any
given path between r and s is always nonnegative (see Eq. [10.31a]). This
implies that whenever the travel time on any path connecting O-D pair r-s
decreases, the expected perceived travel time between r and s, S,(c'), will
decrease. The other property of the expected perceived travel time is that it is
monotonically decreasing (or rather nonincreasing) with respect to the number
of alternatives. Consequently, if a new path is added to the network, S,s(c')
will never increase. As this discussion demonstrates, the expected perceived
travel time does not exhibit counterintuitive results when used to characterize
flow patterns resulting from stochastic network loading.

Many parallels can be drawn between the stochastic assignment paradox
discussed above and Braess's paradox discussed in the deterministic UE con-
text. Braess's paradox results from the assumption that motorists choose their
route so as to minimize their own travel time. Consequently, there is no reason
to expect the total travel time in the system always to decrease when the
network is improved. In the stochastic network loading model, travelers are
assumed to choose a route that will minimize their perceived travel time.
Consequently, there is no reason to expect the total measured travel time to
decrease when the system is improved.

This concludes the presentation of the stochastic network loading para-
dox. The rest of this section discusses the expected perceived travel time in
relation to other measures that can be used to characterize the flow pattern
over a network. This exposition may help the reader develop some intuition
regarding the nature of stochastic network loading.

If var (C s) = 0, V k E X,S, the perceived travel time between O-D pair
r-s equals the minimum (measured) travel time between r and s. In this case

_____�� ·_·

279

Part IV Stochastic User Equilibrium

the entire O-D flow will be assigned to the shortest travel-time path, as in the
deterministic network loading model (i.e., the all-or-nothing assignment). The
travel time experienced by each traveler between r and s will be mink {c[S}.
This quantity will always be larger than (or equal to) the expected perceived
travel time, that is,

E[min {C[} < min {cS} [10.32]

Inequality [10.32] can be proved by applying iteratively property [10.31b], of
monotonicity with respect to the size of the choice set (see Problem 10.8a).

Under stochastic network loading, the fraction of flow using the kth path
between origin r and destination s is given by P['(ce). The average travel time
for all flow between this O-D pair is given by Ek P'(cr)c[s. This average travel
time is always larger than (or equal to) the travel time experienced by each
motorist under deterministic network loading. In other words,

P[S(crs)c > min {crs} [10.33]
k k

as can be shown by the reader (see Problem 10.8b).
Equations [10.32] and [10.33] imply that

qs E[min {CkS} < q min {c['} < q, E CPSrk(Ces) [10.34]
k k k

The right-hand side of this equation represents the total measured travel time
between origin r and destination s under stochastic loading, while the left-hand
side represents the total perceived travel time for this O-D pair. The middle
expression is the total travel time in the case of a deterministic network
loading. (Both inequalities hold as equalities if the variance of the perceived
travel times is zero.) Consider now the case of a network where all the travel
times are deterministically known. In this case all motorists use the minimum
path and the total travel time is qr,, mink {c[S}. When stochastic elements are
introduced into the route-choice criterion, the total measured travel time over
the network will increase (over the all-or-nothing travel time), but the motor-
ists' perceived travel time will decrease.

The Nature of the Flow Variablest

The last subject discussed in this section is somewhat more mathemat-
ical. It deals with the nature of the flow assigned to the network by the model
discussed in this chapter.

The flow assigned to any route, under the assumptions of stochastic
network loading, is a random variable. The distribution of this random vari-
able can be understood by examining a simple binary-choice situation, with
two routes connecting an origin node to a destination node. The O-D flow is

tThe reader may skip this section without loss of continuity.

___1__.. -- .. __�I_ ----- --- _.I- -- - -_I._. �---�--

280

Chap. 10 Discrete Choice Models and Traffic Assignment

q and the routes are numbered 1 and 2, respectively. The O-D flow can be
distributed between the two routes in many ways. Each possible flow pattern
(F1 , F2) can occur with some probability. (Assume for the purposes of this
discussion that q, F1 , and F2 are all integers.)

The probability that the first route will be chosen, by a given motorist, is
P1 (this is the probability that the perceived travel time on route 1 is less than
the perceived travel time on route 2). The probability that F1 motorists will
choose route 1 and F2 motorists will choose route 2 (where F1 + F 2 = q) ist

Pr [F,, F2 =)P - - [10.35]

This is a binomial distribution with parameters q and P1 . The mean of this
binomial distribution is qP1 , which is identical to the flow assigned to route 1
according to the stochastic network loading-Eq. [10.22a]. Thus stochastic
network loading models give the mean flow on each path and the mean flow on
each link of the network. These means were denoted in this chapter by f ' for
the flow on path k between r and s, and x, for the flow on link a.

The distribution of the path flow variables can also be derived for a
general network. The probability of obtaining a given flow pattern, F's = (...,
F, ...), between origin r and destination s, is given by the multinomial density
function with parameters q,, and P" = (.. , , ...). In other words,

Pr (F') = q,,! F V r, s [10.36]
k e X.rs, k

where

E F- = q.rs
k

The moments of the distribution of Fks for a given O-D pair, r-s, are

E[F-'] = q,,Prs V k [10.37a]

var [Frk] = q,Prks(l - P) V k [10.37b]

cov [F', F'] = -q Prk'PlS V k, I [10.37c]

The covariance between path flows connecting different O-D pairs is zero.
In principle, the joint density function of the flow on all links can be

approximated from Eqs. [10.37] by a multivariate normal distribution. To do
this, the joint distribution of all path flows is first approximated by a single
multivariate normal distribution function. In other words,

F L MVN (f,) [10.38]

where F = (..., F'', ...), f = (..., f', ...), and L is a block diagonal covari-
ance matrix whose elements are given by Eqs. [10.37b] and [10.37c]. Let A be

tIn this section F is used to denote both the random variable and the value it may attain
in a particular experiment.

......

281

Part IV Stochastic User Equilibrium

the link-path incidence matrix of the network under consideration, that is,
A = (..., A rs, ...), where Ars is the link-path incidence matrix associated with
O-D pair r-s. The vector of link flows, X = (..., Xo, ...), can be derived from
the values of the path flows by using the incidence relationships (see Eqs.
[3.2]):

X = F AT [10.39]

Due to the properties of the normal distribution (see the Appendix), the fact
that F is normally distributed means that X will also be normally distributed,
that is,

X - MVN (f. A, AT . E . AT) [10.40]

Accordingly, the mean of the flow on link a, xa, is given by

E[Xa] = xa = E Efk a,k
rs k

where fs is the mean flow on path k between r and s. This is the link flow that
stochastic network loading models solve for.

10.3 SUMMARY

This chapter generalizes the deterministic network loading mechanism used in
parts II and III to cases in which travelers do not perceive the travel time
accurately. The perceived travel time on each path is modeled as a random
variable distributed across the population of motorists. Each motorist is as-
sumed to choose the path that he or she perceives to be the shortest.

This framework is analogous to the one used in discrete choice modeling
to look at the choice among various alternatives. These models assume that
individuals' preferences can be captured by a utility measure associated with
each alternative. The utility measures cannot be observed and are therefore
modeled as random variables. Each individual is then assumed to choose the
alternative with the maximum utility. In the case of choice between paths, the
disutility of each alternative path is its perceived travel time, which motorists
try to minimize.

The first section of this chapter explains the foundation of discrete choice
models, presenting some fundamental concepts, such as the choice function
and the satisfaction. It also presents two specific model forms, the logit and the
probit. The concepts presented in that section are used in the second section to
formulate the stochastic network loading model. In this model, the probability
that a given path connecting a particular O-D pair is chosen is the probability
that its perceived travel time is the smallest. The second section also intro-
duces the expected perceived travel time, which parallels the notion of the
satisfaction function of discrete choice models. The expected perceived travel

_ ____ I_ _·�__ I_ __� __ ____r______ __ ��I __

282

Chap. 10 Discrete Choice Models and Traffic Assignment

time measures the travel time that individuals expect to spend when traveling
from their origin to their destination. The differences between stochastic and
deterministic loading models are clarified, in this section, at two levels. First,
the stochastic paradox phenomenon emphasizes the fact that in stochastic
network loading models each motorist is assumed to use the route with the
lowest perceived travel time. Second, as the last section demonstrates, the flows
themselves are random variables under stochastic network loading. The
output of the model (the link-flow pattern) consists of the means of these
random variables.

10.4 ANNOTATED REFERENCES

Econometric models with discrete dependent variables have been used for
modeling binary outcomes of experiments by many researchers, primarily in
the area of toxicology and biology. These models are described, for example,
by Finney (1964). The modern approach to these models and their interpreta-
tion in the context of discrete choice started in the late 1960s and early 1970s
with the work of McFadden (1974) and others on logit models, including the
development of estimation methods. This work was applied to urban travel
demand modeling, as described in the book by Domencich and McFadden
(1975). The first logit models were applied to mode choice problems, and later
to trip distribution and other transportation-related problems. Tye et al. (1982)
survey many of these applications in a report for the National Cooperative
Highway Research Program. Currently, the logit model is used in a variety of
applications including geography, transportation, market research, health care,
and many others.

The modern interest in probit models, in the context of travel demand
analysis, started in the late 1970s. Daganzo et al. (1977) have adopted Clark's
(1961) approximation formulas to the computation of the probit choice func-
tion. The Monte-Carlo simulation technique for estimating the probit choice
probabilities was developed at the same time by Lerman and Manski (1978).
Both research teams (Daganzo et al., and Lerman and Manski) found that
Clark's approximation dominated the simulation method in the range of prob-
lems considered. Other approximate analytical methods developed in the same
time include the numerical integration method of Hausman and Wise (1978).
Many of these methods are summarized in a survey paper by Sheffi et al.
(1982). The state of the art (as of 1979) with regard to discrete choice models in
general, and the multinomial probit model in particular, is summarized in
Daganzo's (1979) book on the subject. (this reference also includes many orig-
inal contributions).

The concept of satisfaction in the context of discrete choice models was
suggested by Daganzo (1979). For logit models, however, it was developed
earlier, as a system evaluation criterion, by Williams (1977), as an accessibility
measure by Ben-Akiva and Lerman (1978), and in the context of networks by

__

283

Part IV Stochastic User Equilibrium

Sheffi and Daganzo (1978). The aggregation concept is discussed in many of
the above-mentioned references, as well as by McFadden and Reid (1975),
Koppelman (1976), and Bouthelier and Daganzo (1979).

Daganzo and Sheffi (1977) developed the view of stochastic network
loading models in the context of discrete choice analysis. The stochastic para-
dox discussed in Section 10.2 was pointed out by Sheffi and Daganzo (1978a)
in the context of logit route-choice models. The distribution of the flows under
stochastic network loading models was formulated by Daganzo (1977a), who
also showed how this distribution can be used to develop statistical tests on
the possible values of the flow pattern.

10.5 PROBLEMS

10.1. A discrete choice model of travel mode to work includes two alternatives: driv-
ing alone (alternative 1) and taking transit (alternative 2). The model is based on
the following utility functions:

U1 = 4 1 - t + t

U 2 = 42 -'t + 2

where 4t and 02 are model parameters. Both error terms follow a uniform
distribution between b and -b.
(a) Discuss the relative magnitudes of 04 and 02 that you would expect.
(b) Develop an analytical expression for P1 as a function of 40, 02, t, t, and b.
(c) Plot P1 as a function of t - t, for several representative values of 401 and 02.

Assume that b = 1. Discuss the effect of((01 - 02) on the choice probability.
(d) Assume that 41 - 4)2 = 1 and plot P1 versus t - t for several values of b.

Discuss the effect of b on the choice probability and draw general con-
clusions.

*10.2. Based on the assumption that the utilities are identically and independently
distributed (i.i.d.) Gumbel variates (see Eq. [10.6a] and the associated footnote),
prove that the logit choice probability formula holds.

10.3. Consider the following discrete choice model:

U1 = 1- t + t

U2 = -t + 2

Plot P1 versus (t- t) if the error terms are i.i.d. Gumbel variates. Assume now
that - N(O, 72 /6), 2 - N(O, r

2/6) and cov (1, 2) = 0. Plot P1 versus (t - t)
under these assumptions and compare with the logit curves. What can you
conclude from these curves?

10.4. Show that the function f(x) = maxi (xi) is convex in xi. Given that, prove the
convexity property of the satisfaction function.

*10.5. Prove Eq. [10.16a]. [Hint: Express Pk(V) in integral form and think about the
region of integration.]

*10.6. Prove Eq. [10.16b]. (Note that the underlying distribution changes as well.)

._____ ____1 _� __ �_ __ _� __� ___� ____

284

Chap. 10 Discrete Choice Models and Traffic Assignment

10.7. Consider a logit automobile/transit mode split model with the following utility
functions:

Auto: U = 5 + 2 INC- t +

Transit: U2 = 2-t+

where INC is an income variable.
(a) What is the choice probability of alternative 1 for a group of decision

makers with income INC = 2.0 if t - t = 2?
(b) What is the mode split if the population includes two groups: i of the

population have INC = 1.0 and ½ have INC = 2.0?
(c) What is the mode split if the income is uniformly distributed between 0.5

and 2.5?
(d) Compute the satisfaction if INC = 2.0, t = 4, and t = 2.
(e) Compute the satisfaction if INC = 1.0 for * of the population and INC = 2.0

for the rest.
(f) Compute the satisfaction if INC - U(0.5, 2.5). (Still assume that [= 4, t = 2.)

10.8. (a) Prove that E[mink {C'}] < mink {c['}.
(b) Prove that Ek Pks(cs)c ' 2> mink {c['}.

10.9. Assume that the following logit model is used for assigning traffic between the
origin and the destination of the network shown in Figure 10.2:

e-c'

P e-C + e-C2

(a) Assume further that the total O-D flow is I unit. Plot the total travel time in
the system, as a function of c,, for c2 = 0.3 time unit. Show the region where
the stochastic paradox may happen.

(b) Plot the expected perceived travel time in this network as a function of c1 for
c2 = 0.3. Comment on the shape of this curve.

(c) Assume now that the motorists know the travel time exactly. Plot the total
travel time in the system as a function of c,, for c2 = 0.3 under that assump-
tion. Compare this curve to the ones obtained in (a) and (b).

10.10. The "paradox" discussed in connection with Figure 10.4 may not occur for all
stochastic network loading models. Under what condition would it not occur?
In other words, for what type of stochastic loading models would the addition of
the center link not increase the total travel time?

10.11. Consider, again, the network discussed in Problem 10.9. Assume that c1 = 2 and
c2 = 1. Assume further that the O-D flow is 10 units. What is the expected flow
on route 1? What is the probability that the flow on route 1 will be 4 units of
flow? What is the probability that it will be 4 units of flow or less? Assume now
that q = 10,000 flow units. What is the expected flow on route 1? What is the
probability that the flow on route 1 will be less than 5000 but more than 3000
flow units?

_ ____

285

1

Stochastic

Network Loading Models

Section 10.2 described a (stochastic) network loading approach in which
motorists' perception of travel time is assumed to be random. This model
generalizes the all-or-nothing network loading mechanism used in the first
parts of this text. Stochastic network loading models are a special case of
discrete choice models. To apply these models, the probability distribution
function of the (perceived) travel time on each path has to be known so that
the path choice probability can be calculated.

This chapter considers two specific route-choice models. The first is
based on the multinomial logit formulation and the second is based on the
multinomial probit formulation. The logit and probit route-choice models are
each presented separately and then compared to each other in terms of several
characteristics, including realism of representation and computational ef-
ficiency.

Note that the number of alternative paths connecting a typical O-D pair
in a network of realistic size is extremely large. Consequently, it is not possible
to enumerate all these paths, calculate the probability that each will be chosen,
and compute the flow assigned to each. Both stochastic network loading algo-
rithms presented in this chapter are, therefore, link-based procedures which
avoid path enumeration and perform the assignment using only link and node
variables.

11.1 LOGIT-BASED LOADING MODELS

The logit formula was presented in Section 10.1 as a random utility model. It
is based on the assumption that the utilities of all the alternatives in the choice
set are identically and independently distributed (i.i.d.) Gumbel variates. A

286

· · �_ ____ __ I _� ___ ___ I�

Chap. 11 Stochastic Network Loading Models

logit route choice model can be derived from the assumption that the utility of
using the kth path between origin r and destination s, U', is given by

U, = -Oc s + Ers V k, r, s [11.1]

where c s is the measured travel time, 0 is a positive parameter, and [' is a
random term, the distribution of which is given by the Gumbel density func-
tion. The random variable e, in Eq. [11.1] is related to the random term in the
percevied route travel time mentioned in Section 10.2 (the term [,~ in Eq.
[10.20]) by a simple transformation: , = -0Sr', V r, s. Since the error terms
associated with all paths are assumed to be identically distributed, ES can be
replaced by srs in Eq. [11.1]. Following Eq. [10.6a], this specification of the
utility function implies that

e- Oc'
Ps = ee V k, r, s [11.2]

Instead of using the term "utility" in discussing stochastic network load-
ing problems, Section 10.2 used the notion of perceived travel time. The per-
ceived travel time on the kth path between origin r and destination s is C[,
where (see Eq. [10.20])

Cs = c + V k, r, s

Using the transformation of 5rs mentioned above, the perceived path travel
time can be expressed as

1
Crk = rks rs V k, r, s [11.3]

Again, the random components, a, are assumed to be i.i.d. Gumbel variates.
The parameter 0 is a constant that scales the perceived travel time. As

mentioned in Section 10.1, the logit choice probabilities depend on utility
differences; without proper scaling the choice probabilities would have de-
pended on the units of measurement of travel time. For the logit model it can
be shown that this parameter is inversely proportional to the standard error of
the distribution of the perceived path travel times.t To understand the effect of
this parameter consider a given O-D pair connected by many paths. Assume
further that the route shares are given by a logit model such as formula [11.2].
If 0 is very large, the perception error is small and users will tend to select the
minimum measured travel-time path. A small value of 0 indicates a large
perception variance, with travelers using many routes, including some that
may be significantly longer (in terms of measured travel time) than the true
shortest path. In the limit, where 0- 0, the share of flow on all paths will be
equal, regardless of path travel times.

This section describes an algorithmic approach for logit-based network

tIf e" in Eq. [11.3] is a random Gumbel variate, var (C[') = n2/602.

··__··_

287

Part IV Stochastic User Equilibrium

loading. This model is then critically evaluated in the context of what is
required by a stochastic assignment model.

STOCH Algorithm

The algorithm given here is known in the literature as the STOCH
method or Dial's algorithm. The procedure effectively implements a logit route-
choice model at the network level. It does not, however, assign choice prob-
abilities (and flows) to all paths connecting each O-D pair. Instead, it assumes
that many of these paths constitute unreasonable travel choices that would not
be considered in practice. Consequently, the STOCH procedure includes a
preliminary phase which identifies the set of "reasonable" paths connecting
each O-D pair. The O-D flow is then only assigned to these paths, using the
logit formula with parameter 0.

Figure 1 1.a depicts a small contrived network which is used throughout
this section to illustrate the various steps of the algorithm. The network in-
cludes 9 nodes and 12 links, the travel time on which is shown in the figure.
Assume now that the problem is to assign a flow of 1000 trips per time unit,
between node 1 and node 9, which are connected by six alternative paths. The
links of this network are denoted by their end nodes; namely, a link leading
from (upstream) node i to (downstream) node j is denoted by i -- j.

The steps of the algorithm are described below. The algorithm defines a
path between some O-D pair as "reasonable" if it includes only links that
take the traveler further away from the origin and closer to the destination.
Such links can be identified by associating two labels with each node i: r(i) and
s(i). The first label, r(i), denotes the travel time from origin node r to node i
along the minimum travel time path, while s(i) denotes the travel time from
node i to destination node s along the minimum path. Each reasonable path
includes only links i-+j such that r(i) < r(j) and s(i) > s(j).

The steps of this algorithm for one O-D pair (r-s) are outlined below.
These steps should be repeated for each origin-destination pair in the network.

Step O: Preliminaries:

(a) Compute the minimum travel time from node r to all other nodes. Deter-
mine r(i) for each node i.

(b) Compute the minimum travel time from each node i to node s. Deter-
mine s(i) for each node i.

2
2

2

2

LI 2

2

! 2
! 2 2~~~~~~~~~~~~~~~~~

2

1 =

2

. 1 e12t 2 2

)

Figure 11.1 Network example demon-
strating the application of STOCH: (a)

)) 9) the network, including link travel times.

288

\ A,

I

Chap. 1 1 Stochastic Network Loading Models

r[ll]=O r[21-2 r[3]=4
s[16 s[2]-5 s[31=4

1)2n >G3 [b]
r[51 3 r[61=4

r[41=2 ft s[51-3 r Is[6]-2
s[4]=4 (5 6--'' e

r[71=4 d
s[7]-4 (7 8

r181=5 r[9]=6
s81]=2 s[91= 0

Figure 11.l(b) The forward and backward node potentials r(i) and s(i) (node 1 is
the origin, r, and node 9 is the destination, s).

(c) Define (i as the set of downstream nodes of all links leaving node i.

(d) Define oFi as the set of upstream nodes of all links arriving at node i.

(e) For each link i-,j compute the "link likelihood", L(i-j), where

eor(j)- -r(i), - W(] - PI if r(i) < r(j) and s(i) > s(j)
L(ij) = otherwise

In this expression t(i- j) is the (measured) travel time on link i -j.

Figure 11.lb shows the values of r() and s() for all nodes, as calculated
for the example network under consideration. Note that according to these
labels not all of the six paths connecting node 1 to node 9 can be considered
reasonable. For example, whereas path 1 -, 2-, 5 - 6 9 is reasonable, path
1 -, 4-+ 7 - 8 - 9 is not, because s(4) = s(7).

Figure 11. c depicts the link likelihoods (with 0 = 1) for all the links in
this example. Note that L(i-j)= 1 for all the links on the minimum path
between the origin and the destination, while L(i-,j) = 0 for all the "unrea-
sonable" links.

Step 1: Forward pass. Consider nodes in ascending order of r(i),
starting with the origin, r. For each node, i, calculate the "link weight,"

L - 1.0 L - 1.0

L -1.0 L-0.3679 L- 0.0

L - 1.0 if L- 1.0

L =0.0 L -1.0 L 1.0

Figure 11.l(c) The link likelihoods (for 8 9
0= 1). L-0.3679 L-0.3679

_ _~~~~~~~~~~~~~~~~---� ___ - -

289

Part IV Stochastic User Equilibrium

(

w-l.O

w w- 1.0

I

w-0.3679

w. 1.3679

w. 1.3679

r I~~~~~~~~~~~~~~~

,, w. 1.0 (D w. 1.0 =~ ld l

w-0.O

w. 1.3679

w-..0 ' w. 0.5032

Figure 11.l(d) The link weights.

w(i -- j), for each j E 9i (i.e., for each link emanating from i), where

L(i-j) if i = r (i.e., if node i is the origin)

W- = L(i j) w(m - i) otherwise
me i [11.5]

When the destination node, s, is reached, this step is completed. The link
weights corresponding to the link likelihoods shown in Figure 1.lc are shown
in Figure 11.1d. To see how these were calculated consider, for example, the
weight calculation for link 5 8. Following Eq. [11.5], w(5 -i 8) is given by

w(5-- 8) = L(5 -- 8) E w(m-- 5)
m . 5

where ~F includes nodes 2 and 4 (since links 2 -- 5 and 4 -* 5 enter node 5).
Thus

w(5--, 8) = 1.0000(0.3679 + 1.0000) = 1.3679

Step 2: Backward pass. Consider nodes in ascending values of
s(j) starting with the destination, s. When each node, j, is considered, compute
the link flow x(i-+j) for each i e Fj (i.e., for each link entering j), by following
the assignment:

w(i-j) (i.e., if nodej is the
qrs w(m-*j) forj = S destination)

x(i-.j) = m E [11.6]

IF U x(j- m)1 w(i j) for all other links i--j

m e ,j

This step is applied iteratively until the origin node is reached. Note that the
sum in the denominator of the quotient includes all links arriving at the
downstream node of the link under consideration. The sum of the flow vari-
ables is taken over all links emanating at the downstream node of the link
under consideration.

The link flows for the example network under consideration (assuming

__

290

Chap. 11 Stochastic Network Loading Models

x-269 xO12) x3 2 <p x' 4 [e]
x = 731 x=26 9 x =0

x. 731 x-731

x=O x=269 x=731

x-07 : :> 8. xo x=269
Figure 11.1(e) The link flows.

that the O-D flow equals 1000) are given in Figure 11.le. The calculation of
these flows can be illustrated by showing how x(2--, 5) has been determined.
When the flow on link 2--, 5 is to be calculated, the flows on links (8 -, 9),
(6 -- 9), (5 -- 6), and (5 --- 8) are already known. Thus

x(2-- 5) = [x(5--+ 6) + x(5-, 8)] w(2- 5)
w(2-, 5) + w(4-- 5)

0.3679
= (731 + 269) = 269

0.3679 + 1.0

This concludes the description of the mechanics of STOCH.

The flow generated by this algorithm is equivalent to a logit-based path
assignment between every origin and every destination, given that only reason-
able paths are considered. To see this, note that each link likelihood, L(i--j),
is proportional to the (logit model) probability that link i--j is used by a
traveler chosen at random from among the population of trip-makers between
r and s, given that the traveler is at node i. The probability that a given path
will be used is proportional to the product of all the likelihoods of the links
comprising this path. The probability of using path k between r and s, Pk, is
then (see Problem 11.3)

s = K H [L(i--j)]' A. [11.7]
ij

where K is a proportionality constant, and the product is taken over all links
in the network. The incidence variable, , k ensures that P"s will include only
those links in the kth path between r and s. Substituting the expression for the
likelihood (Eq. [11.4]) in the last equation, the choice probability of choosing
a particular (reasonable) path becomes

Pk = K I exp {O[r(j) - r(i) - t(i- j)]c6J, k}
ij

=K exp {O Z [r(j)--r(i) - - i-j] k
.j

__ __ ______

291

=K exp A,, - 4jl1 [11.8]

Part IV Stochastic User Equilibrium

The last equality results from the two following summations:

E [r(j) - r(i)]6j, k = r(s) - r(r) = Urs [11.9a]
ii

where Urs is the travel time along the shortest path from r to s, and

t (i J)ij. k =k [11.9b]
ii

In order for Eq. [11.8] to be a proper probability statement, the pro-
portionality constant has to be set such that

Z Ps = 1.0
k

This means that

1
K = eO[u,s - Cr]

whence

e O[u, - cr] e - c
k eC

u
,, e-

E [11.10]

I I

Equation [11.10] depicts a logit model of route choice among the reasonable
paths connecting O-D pair r-s.

Table 11.1 lists the six alternative paths along with their respective
choice probabilities and flows for the example under consideration. When
these path flows are assigned to the network (see Figure 11.2), the resulting
link flow pattern is identical to that generated by the algorithm.

The STOCH algorithm does not require path enumeration. It does re-
quire, however, two minimum-path calculations for every O-D pair in the
network, meaning that it is not practical for large networks. Furthermore, the
algorithm does not take advantage of the nature of minimum-path procedures,
which generate the shortest path from a single origin (the root node) to all
network nodes.

A more efficient algorithm can be devised by redefining the criteria for

TABLE 11.1 Path Choice Probabilities and
Path Flows

Travel Path
Path Time Ps Flow

1 2 3--6--9 8 0 0
1 2 5 6-9 7 0.197 197
1-- 2 --5--8 9 8 0.072 72
1-4*56- 9 6 0.534 534
1 4 5 8- 9 7 0.197 197
I -4--7 -8 9 8 0 0

�� -- ---- � -------

292

Chap. 11 Stochastic Network Loading Models

197+ 72

Figure 11.2 Assignment of logit-based
flows to the network example of Figure I

534 + 197

! 534 + 197

197+72

534+197 (

197+72

197+ 72

)

534+ 197

11.1. W))

reasonable paths. Under the new definition, a path would be considered rea-
sonable if it includes only links that do not take the traveler back toward the
origin. In other words, a link (i-j) is reasonable if and only if r(i) < r(j). The
second part of the original requirement, that these links bring the traveler
closer to the destination, is dropped. In fact, s(i) need not be computed at all.

The algorithm can now be executed for each origin, setting the link
likelihood to zero whenever r(i) > r(j). The link weights are computed exactly
as before. The only change is in step 2, where the volume destined to a
particular node should be added to the outbound flow (leaving that node)
when the link is considered. This step starts with the most distant destination
and proceeds in descending values of r(j). For each link i-÷j, the flow is
determined by the following expression (replacing Eq. [11.6]):

x(i-j) = qri + Y, x(j- m)1 w(j) [11.11]
m E 9j

where qrj is the trip rate from the origin node, r, to node j [and x(j-- m) is
defined as zero if Cj is empty (i.e., for destinations on the edge of the net-
work)]. The step terminates when the origin node, r, is reached. At this point,
the assignment of flow from the origin to all destinations is complete.

When applied to the example network used throughout this section, the
modified algorithm results in the flows depicted in Figure 11.3. This flow
pattern differs from the one generated by the original algorithm due to the
different definition of reasonable path. According to the modified criterion, all
six paths are reasonable.

298 63

Figure 11.3 Link-flow pattern generated

702

) 639 (

63

63 -

by the single-pass STOCH algorithm. (Z3 (2>7 8 w,)~

235

) 639

235

298

63

)

702

I_ � _ _�IIC_ I_ __

293

Part IV Stochastic User Equilibrium

This modified procedure is known as the "single-pass" algorithm. Its
computational requirements are only modestly higher than those of an all-or-
nothing procedure. Consequently, it can be applied to a realistic-size network.
Furthermore, there is no a priori behavioral reason or any empirical evidence
that would favor the original (double-pass) algorithm over the single-pass
version. Computational consideration should, therefore, prevail in logit-based
traffic assignment.

Critique of Logit-Based Network Loading

The STOCH algorithm assigns flow to a transportation network accord-
ing to a logit route-choice model. This model, however, may exhibit some
unreasonable properties resulting from some of the assumptions underlying
the logit choice probability function.

To illustrate the problem, consider the simple network shown in Figure
11.4a. This network includes three routes connecting an origin node to a
destination node. The travel time on each of these routes is 1 unit. The bottom
two routes overlap over a portion of their length which is designated, in the
figure, by p. According to a logit-based assignment model, the flow on all these
three routes would be equal. In other words, each route would carry one-third
of the total O-D flow.

([a)

D

[b]

0

0

I L(['

Figure 11.4 Example network used to il-
lustrate the inability of logit-based assign-

C] ment to account for network structure:
(a) a network with three paths, two of
which overlap by p time units (the num-
bers on the links represent travel times);
(b) small overlap between the bottom
paths; (c) large overlap between the
bottom paths.

294

1

1

Chap. 11 Stochastic Network Loading Models

This assignment may seem reasonable, especially if the amount of over-
lap between the bottom routes, p, is relatively small. In this case, shown in
Figure 11.4b, it may be reasonable to assume that most travelers perceive the
three routes as three distinct alternatives with similar travel times. If, however,
the amount of overlap is large, this may not be the case. For example, Figure
11.4c depicts a situation in which p is very large; in this case travelers may
perceive the bottom two routes as a single alternative. Surely, at the limit (as
p - 1) this will happen and each remaining route (top and bottom) will carry
one-half of the flow. When 0 < p < 1, the top route should carry between
one-half and one-third of the flow, and each of the bottom routes should carry
between one-fourth and one-third of the flow. The logit model, which assigns
one-third of the flow to each route regardless of the network topology, is thus
overestimating the flow on overlapping routes.

The nature of this deficiency of logit-based assignment methods can be
further understood by considering, again, Figure 11.4c. In the limit, when the
overlap is large, the coding of the bottom corridor as a single route or as two
separate routes may be only a matter of ad hoc procedures or coding con-
venience. Such considerations should not affect the resulting flow. If the logit
network loading procedure is used, however, the flow patterns resulting from
coding the bottom corridor as a single path or as two alternative paths will be
significantly different from each other.

This deficiency of the logit model is not unique to route-choice problems.
Consider, for instance, an application of the logit model discussed in Section
10.1 to the case of mode choice between automobile and rail transit. Now, it is
possible to view the transit alternative as two distinct options (say, the odd-
numbered rail cars and the even-numbered rail cars). This would mean that
the choice is among three alternatives: automobile, odd-numbered cars, and
even-numbered cars (the last two alternatives having identical utility func-
tions). Even though such a representation should not change the actual transit
mode share, the application of the logit model to the three alternatives' formu-
lation would result in a larger transit mode share than when transit is modeled
as a single alternative.

Like the route-choice example discussed above, this mode choice anoma-
ly results from the logit's inability to account for correlation between the
alternatives' utilities. This inability stems from the independence assumption
with regard to the utilities' random components. In the mode choice example
given above, the utilities of the two transit alternatives are completely corre-
lated (since they represent the same physical mode), while in the aforemen-
tioned route-choice example, the perceived travel times on the two bottom
routes are correlated by virtue of their overlapping segment. In the mode
choice example, this correlation means that if the odd-numbered cars are
perceived to be, say, faster than they actually are, the even-numbered cars will
also be perceived this way by the same choice maker. In the network example,
the correlation means that if a driver perceives one of the bottom routes to be
faster than it really is, this driver is also likely to consider the other bottom

____..___ __

295

Part IV Stochastic User Equilibrium

[a] [b]

destination

destination

10min 5min

origin

125min 120min

Figure 11.5 Two-route network exam-
ple: (a) two short routes; (b) two long

origin routes.

route as faster. The reason for this is that the error may be in the perception of
travel time on the overlapping segment, in which case both bottom routes
would be equally affected. Consequently, the extent of this correlation is deter-
mined by the relative length of the common segment. Thus, there is a need to
account for the correlation between the perceived travel times of the various
routes in order to properly reflect the topology of the network. This cannot be
accomplished with the logit model.

Another possible anomaly that may arise in conjunction with a logit
route-choice model is due to the fact that the path choice probabilities are
determined solely on the basis of travel-time differences. To see the problem
consider, for example, two binary-route-choice cases, such as the ones shown
in Figure 11.5. In the first case (shown in Figure 11.5a) the two routes' travel
times are 5 and 10 minutes, respectively, while in the second case (Figure
11.5b) the two travel times are 120 and 125 minutes, respectively. In the first
case, it is likely that almost all motorists will use the shorter (5 minutes) path,
while in the second case, it is likely that a significant number of travelerst
would use the longer (125-minute) path rather than the 120-minute path. This
expected route-choice behavior is due to the variance in perception, which is
likely to be related to the length of the routes. In other words, the second
scenario (125 minutes versus 120 minutes) offers more opportunity for
"wrong" perception (in the sense of choosing the longer travel-time route)
than the first case (10 minutes versus 5 minutes). In contrast with the route

tLess than half of the total flow, though.

296

Chap. 11 Stochastic Network Loading Models

choice behavior mentioned above, an application of the logit model to the two
cases shown in Figure 11.5 would result in the same flow pattern. In other
words, the flow share of the longer route in Figure 11.5a would be the same as
the flow share of the longer route in Figure 11.5b.

Again, this deficiency of the logit is not unique to network loading
models. It is rooted in the logit's underlying assumption that the utilities' error
terms are identically distributed with the same, fixed variances. The logit
model is not applicable in cases where the error terms' distribution depends on
the alternatives' characteristics or on the systematic part of the utility func-
tions. In the aforementioned example, the distribution of the perceived path
travel times should be a function of the respective lengths of the alternative
routes, whereby longer routes are associated with larger variance of percep-
tion. Such a characteristic, however, cannot be accommodated by the logit
model.

The above-mentioned limitations of the logit model should not cloud the
fact that the single pass STOCH algorithm is remarkably efficient, requiring
an amount of computational effort that is only modestly higher than the
simplistic all-or-nothing assignment models. There may be network problems
to which logit is applicable, in which case the algorithm or the ideas behind it
should be utilized. Furthermore, the logit model itself is widely used in travel
demand analysis, as well as in other fields. The properties mentioned above do
not generally bias the results of the model in cases in which the perceived
utilities of the alternatives considered are only slightly correlated and when
their probability distributions are similar.

The next section discusses a probit-based network loading procedure
that alleviates many of the difficulties associated with logit-based network
loading models. This is accomplished, however, at increased computational
costs.

11.2 PROBIT-BASED LOADING MODEL

The probit model was presented in Section 10.1 as a discrete choice model
based on random utility theory. This section applies the probit model to the
choice of route between an origin and a destination, where the perceived path
travel times are normally distributed. The first part of this section shows that
the path travel-time distribution can be derived from the probability distri-
bution of perceived link travel times. These relationships between the distri-
bution of the perceived travel times over links and paths respectively are
utilized in the derivation of a probit-based stochastic network loading algo-
rithm. The second part of the section describes the algorithm, which is based
on a Monte Carlo simulation of the perceived link travel times. Finally, the
probit model is compared to the logit model in terms of the applicability of
both approaches to route-choice situations, as well as in terms of compu-
tational efficiency.

__ I

297

Part IV Stochastic User Equilibrium

Derivation of Perceived Path Travel Times

As mentioned above, the probit route-choice model assumes that the
perceived path travel time along any given path is normally distributed with a
mean equal to the actual (measured) travel time. This distribution can be
derived from the distribution of the link travel times as follows.

Let T denote the travel time on link a, as perceived by a motorist
randomly chosen from the population of drivers. T. is a random variable that
is assumed to be normally distributed with mean equal to the measured link
travel time and with variance that is proportional to the measured link travel
time. In other words,

T, - N(ta, Pta) [11.12]

where Bf is a proportionality constant. In fact, fB may be interpreted as the
variance of the perceived travel time over a road segment of unit travel time.
Assuming that nonoverlapping road segments are perceived independently, the
variance of a segment with travel time t would be Pt,, as indicated by ex-
pression [11.12].

Note that the uncertainty in the perception of travel time can be as-
sumed to be related to the link length rather than its travel time. Conse-
quently, the variance in Eq. [11.12] can be defined to be, for example, Pla,
where l is the length of link a (and P is the variance of the perceived travel
time over a road segment of unit length). Alternatively, the variance can be
defined as Ptt° where t is the free flow travel time on link a [i.e., t = t(O) and
p is interpreted as the variance of the perceived travel time over a road
segment of unit travel time at free flow]. In this chapter it is assumed that
var (Ta) = ta, for simplicity.

The normality assumption may not be entirely appropriate for modeling
the distribution of the perceived link travel times, since these times cannot be
negative. Consequently, a nonnegative distribution with long tail to the right
(positive skewness), such as the gamma distribution, could have been more
appropriate. It is, however, reasonable to believe that the relative magnitude of
the perception error is small with respect to t,, and thus, even if the gamma
distribtuion were used, the calculations are in the region where gamma distri-
butions are well approximated by normal distributions. The assumption that
the perceived link travel times are normally distributed is thus not unrea-
sonable.t Note that since the perceived travel times of nonoverlapping road
segments are assumed to be independent, the random variables {Ta} are mu-
tually independent.

The distribution of the perceived path travel times can now be obtained
from the incidence relationships, that is,

C, = T,' k V k, r, s [11.13]

tit should be noted that the algorithm described below is applicable to any link time
distribution, including gamma.

298

Chap. 11 Stochastic Network Loading Models

Equation [11.13] states that the perceived travel time on route k between r
and s is the sum of the perceived travel times on all the links comprising this
path. Due to the properties of the normal distribution, the perceived path
travel times will also be normally distributed with mean, c[', given by

c = t k [11.14a]
a

and a variance given by

var (C') = E Ptao 'k = fc[' [11.14b]
a

This follows directly from Eqs. [11.12] and [11.13]. The path travel times,
however, are not independent: If two paths, k and 1, have some links in
common, their respective perceived travel times should be correlated. The
covariance between the perceived travel times of two paths is thus related to
their common portion, that is,

cov (C[', C') = E fita 5 k ' = fic;,1 [11.14c]
a

where c' I is the measured travel time on the common segments of paths k and
I between origin r and destination s.

The distribution of the perceived path travel times can also be derived
from the properties of the multivariate normal distribution by using matrix
notation.t Let T = (..., T, ...), denote the perceived link travel-time vector
and assume that T is normally distributed, that is,

T MVN (t, ') [11.15]

where t = (... t, ...), and S' = [. t I], where I is the identity matrix. The
link covariance matrix in Eq. [11.15] is diagonal, with the nonzero entries
being Pta. (In other words, this covariance matrix includes only the variance
terms as its nonzero entries. All the covariance terms are zero.) Let AS be the
link-path incidence matrix for O-D pair r-s, as defined in Eq. [3.2] (i.e., the
elements of this matrix are bk). The vector of perceived travel times for
the paths joining origin r and destination s, C" = (..., C, ...), is given by
C" = T A". The joint density function of this vector is given by

C" - MVN (", E") V r, s [11.16a]

where

C' = t A' V r, s [11.16b]

EI" = A"T . [t . I] A V r, s [11.16c]

The diagonal terms of L" are the variances described in Eq. [11.14b], while
the off-diagonal terms are the covariances given in Eq. [11.14c].

tReaders who do not find matrix algebra useful can skip this paragraph or consult the
Appendix.

__·_

299

Part IV Stochastic User Equilibrium

Once the density function of the perceived path travel times is known, it
can be used to determine the share of O-D flow that should be loaded onto
each path. The path-choice probability cannot, however, be calculated by
using any of the analytical approximation methods discussed in Section 10.1,
including Clark's approach. The reason is that these methods require path
enumeration; a computationally prohibitive task for networks of the size typi-
cally used in urban transportation planning. Furthermore, even in small net-
works in which paths could be enumerated, Clark's approximation cannot be
applied since it is computationally expensive to use for more than 10 or 20
alternative choices (it is also inaccurate in these cases). Consequently, the only
feasible method in this context is an adaptation of the Monte Carlo simulation
procedure described in Section 10.1.

Algorithm

The algorithm for probit-based stochastic network loading is relatively
simple. At each iteration the density function of the perceived travel time of
each link is sampled once. This results in a set of realizations (drawings) of
perceived link travel times which is used in an all-or-nothing assignment. The
flow between each origin and each destination is assigned to the shortest
travel-time path between the origin and the destination based on the simulated
perceived link travel times. This process of sampling and assignment is then
repeated several times. When the process terminates, the results of the individ-
ual iterations are averaged for each link to yield the final flow pattern.

The advantage of the simulation method is that it does not require the
sampling of the perceived path travel times; only perceived link travel times
are sampled at every iteration thus avoiding path enumeration. The perceived
path times are built "automatically" as the minimum paths are generated. The
perceived travel time used in a particular iteration for a given path is the sum
of the perceived link times drawn, in the simulation process, from the density
functions associated with the links along this path.

The Monte Carlo simulation process of drawing perceived travel times
may, in theory, produce negative perceived link travel times. Such a travel time
may "throw off" the shortest-path routine used in the all-or-nothing assign-
ment. In practice, however, the probability of a negative link travel time is
negligible and consequently, the normal density function can be truncated at
zero with no significant loss of accuracy.

The number of sampling/assignment iterations to be performed can be
decided on the basis of the variance of the average link flows at each iteration.
To do this, let X(') denote the flow on link a, resulting from the Ith application
of the sampling-assignment sequence.t The link flow estimate at this point is

tX(') can be viewed as a realization drawn from the link flow probability density function
discussed at the end of Section 10.2.

I--I-- - - - ---l�-�-�r�---s I - - - -- �-

300

Chap. 11 Stochastic Network Loading Models

x), where

x - X X() [11.17a]

The (sample) standard deviation for every link a in the sample is given by

Let a(') denote the standard deviation of xa). In other words, a(l) is given by

al/1(1 1) E(X(y) - X 1
1))2 V a [11.17b]

This standard deviation can be used to develop a stopping criterion for the
algorithm. For example, the algorithm could be terminated if

max {al)} < Kc [11.18a]
a

where K is a prespecified constant indicating the required accuracy. Alter-
natively, the stopping criterion can be based, for example, on the magnitude of
the variance relative to the magnitude of the mean flow, that is

a K or max{f(') K" [11.18b]
a

where K' and K" are some other (nondimensional) constants. The algorithm can
now be summarized as follows:

Step 0: Initialization. Set = 1.

Step 1: Sampling. Sample T(,) from T, N(ta, ta) for each link a.t

Step 2: All-or-nothing assignment. Based on {Ta)}, assign {qs} to the
shortest path connecting each O-D pair r-s. This step yields the set of link
flows {Xa).

Step 3: Flow averaging. Let x(a) = [(I -)x(- 1) + Xa')]/l, V a.

Step 4: Stopping test
(a) Let a((t)= - 1) _X - x(,]2V a

1l(l- 1) m-1X (

(b) If maxa {a,)/x)}
< K, stop. The solution is {x(l)}. Otherwise,

set l:= l + 1 and go to step 1.

tRecall that this distribution may be truncated at zero.

_ _�______ __··_ __

301

Part IV Stochastic User Equilibrium

Note that the flow has to be averaged at every iteration so that the standard
error can be computed in order to test for convergence. The sequence of flow
averages does not have to be stored for each link, though. Step 3 demonstrates
how x) is computed from x'-') and XI') rather than directly from the se-
quence X(1) , 2), .. , X.' The standard error of the link-flow estimate can
also be calculated without storing all the link flows in the computer's memory,
by using a' -1), x(', and X(') to compute a(') (see Problem 11.5).

The number of iterations required for this procedure to converge is not
too high for large networks. Usually, an acceptable level of accuracy can be
achieved after four to six iterations. This happens because in large networks
each path includes many links, the perceived travel time of which is sampled
independently at each iteration. These sampled times are added to each other
when the perceived path times are calculated, generating, in effect, an averag-
ing process that tends to lead to a relatively rapid convergence of the simula-
tion procedure.

Comparison of Probit and Logit Loading Models

The last part of Section 11.1 included a critical evaluation of logit-based
route-choice models. Such models were criticized on two grounds. The first is
the lack of sensitivity to network topology, a problem that results in the
assignment of too much flow to overlapping routes. The second is the depend-
ence of the route-choice probabilities on travel-time differences alone. This
section shows how both concerns can be alleviated by the use of the probit
model.

Figure 11.6a displays, again, the single O-D network example presented

[a]
t=l

PTOP

0.5

0.4-

0.3-

PROBIT

LOGIT

Ib]

0.5

0.4 Figure 11.6 Comparison between logit
and probit network loading models: (a)

-0.3 an example network, including an over-
;lnnn n -ement h-twe-n the hntt-m

.7·7 lfyiL~ll~ ,~q.,~111[,11 Id~., Ut W I,1 II~ ... W 1 t -,--

o. I 0.0 routes; (b) the share of flow on the top
0.0 0.2 0.4 0.6 0.8 1.0 route as a function of the amount of over-

P lap.

- --- --- ------ II-- ---L- --- --- --- --- U.

302

Chap. 11 Stochastic Network Loading Models

in Section 11.1 (see Figure 11.4 and the related discussion). This network
includes three paths, with the bottom two overlapping. The measured travel
time on each of these paths is 1 time unit and the travel time along the bottom
overlapping segment is p time units. Figure 11.6b displays the choice probabil-
ity for the top path in Figure 11.6a, PTOP, as a function of p.

According to the logit model, PTOP= 3 regardless of the value of p,
as illustrated by the horizontal line shown in Figure 11.6b. The other curve in
the figure depicts the probit choice probability of the top path, for various
values of p, assuming that = 1.0. This curve exhibits the expected shape,
with PTOP = 1 for p = 0 and PTOP increasing as p increases until, at p = 1.0,
PTOP = . As explained in Section 11.1, this assignment is reasonable since,
when p-- 0, the network includes three paths of the same length, whereas
p-, 1 means that the network includes only two such paths.

The probit curve shown in Figure 11.6b could be obtained by using
Monte Carlo simulation. This example, however, is small enough so that the
analytical approximation method can be used. The reader can follow the
formulas in the Appendix to verify that the choice probability of the top path
can be expressed as

PTOP = 1 - (p [11.19]

where D(.) is the standard normal cumulative function. This is the probit
curve plotted in Figure 11.6b.

The second difficulty associated with logit is that it cannot account for
the dependence between the perception variance and the measured path travel
times. As noted in Section 11.1, this means that a choice between a 5-minute-
long path and a 10-minute-long path would result in the same flow distri-
bution as a choice between 120-minute and 125-minute long paths. Figure 11.5
shows the two route-choice situations under consideration. This difficulty
would not occur with a probit route-choice model, as shown in the following
numerical example.

Consider, first, the choice between the shorter routes (i.e., the 5-minute
route and the 10-minute one). According to the underlying probit assumption,
the perceived travel time on the first route, C1 , is normally distributed with
mean 5 and variance 5, while the perceived travel time on the second route,
C2 - N(10, 10B). Since these paths do not overlap, the choice probability of
the first route, PI,is given by

P = Pr (C < C2) = Pr (C1 - C2 < 0) [11.20a]
The random variable (C1 - C2) is normally distributed with mean -5 and
variance 5 + 10P = 15/. The probability that this random variable assumes a
value less than zero can be calculated by evaluating the cumulative standard
normal function at zero, that is,

P = -/-) [11.20b]

303

Part IV Stochastic User Equilibrium

Assuming that PB = 1, this expression means that P1 = 0.90 and P2 = 0.10. In
other words, 90% of the motorists would prefer the 5-minute route to the
10-minute route.

Consider now the choice between the 120-minute route and the 125-
minute route. The respective perceived travel times on these routes are nor-
mally distributed [i.e., C, - N(120, 120pi) and C2 - N(125, 125#/)]. The prob-
ability that route 1 will be chosen is given by Eq. [11.20a]. The perceived
travel-time difference, in this case, is also normally distributed with mean -5,
but the variance is 120# + 125/ = 245fi. Assuming that 1B = 1, the probability
of choosing route 1 is then

PI = = 0.63 [11.21]

meaning that P2 = 0.37. As expected, more motorists choose the route with
the higher mean travel time in this case. Thus the probit model results in the
expected route flows.

Note that if, in the last example, the two routes overlapped for most of
their length, the flow allocation should be similar to the flow allocation be-
tween the two shorter routes. To see this, assume that the two long routes (i.e.,
120 minutes and 125 minutes) overlap and the travel time on the overlapping
segment is 115 minutes. Such a situation is illustrated in Figure 11.7. The
covariance between the perceived travel time of the two routes is proportional
to their common portion, as indicated by Eq. [11.14c]. Thus

cov (C1, C2) = 115fi [11.22a]

The variance of the difference between the perceived travel times of the two

destination

55min

10 min min

60min

Figure 11.7 Example of two-route net-
) work in which the two routes overlap

origin along most of their length.

304

I

Chap. 11 Stochastic Network Loading Models

routes equals the sum of the travel time variances minus twice the travel time
covariance between the two routes, that is,

var (C1 - C 2) = 120i + 125f8 - 2. 115/ = 15B [11.22b]

Assuming that = 1, the choice probability of route 1 is given in this case by

PI = 5(D = 0.90 [11.22c].

This probability equals the one obtained in the case of the two short routes.
This means that in the case of thc overlapping routes, the choice is made on
the basis of the segments that are different between the two alternatives. The
common segment does not affect the choice, as might be expected.

In conclusion, it seems that the flow assignment generated by the probit
model is more reasonable than the one generated by a logit model. This
realism is achieved, however, at higher computational costs. The probit assign-
ment algorithm described in this section may require several (four to six)
iterations for a large network. Each such iteration involves a full all-or-
nothing assignment. The computational requirements of the STOCH algo-
rithm, in comparison, are less than those required for two all-or-nothing as-
signments.

11.3 SUMMARY

This chapter outlined two stochastic network loading models which are both
based on discrete choice models: the first on the multinomial logit and the
second on the multinomial probit. Each network loading model is explained in
detail, including an assignment algorithm corresponding to that model.

The first section of this chapter presented the logit model for stochastic
network loading and the STOCH algorithm. This algorithm assigns the flow,
using the logit model, to a subset of the paths connecting each O-D pair. Two
definitions of this subset are presented, corresponding to two versions of the
algorithm. The more efficient of these approaches is the single-pass version, in
which each path is included in the subset of used paths only if none of the
links along this path takes the motorist back toward the origin. This algorithm
requires a computational effort that is only moderately higher than that re-
quired for an all-or-nothing assignment.

Notwithstanding the computational efficiency of the STOCH algorithm,
the logit approach for stochastic network loading is limited in some respects.
As shown in Section 11.1, the logit model assigns too much flow to overlap-
ping paths. Also, it cannot account for a perception variance that depends on
the length of the paths to be traveled.

Section 11.2 presents an application of the probit model to stochastic
network loading. This model can be developed from the assumption that the

· ___�I�__ ___ __

305

Part IV Stochastic User Equilibrium

perceived travel time on each link is normally distributed. This assumption
leads to a multivariate normal distribution of the perceived travel times on all
paths connecting each O-D pair.

To load the network according to probit choice probabilities, a Monte
Carlo simulation can be used. This simulation consists of repeated iterations of
random drawings of perceived link travel times and corresponding all-or-
nothing assignments. The flow generated by this algorithm will stabilize for
large transportation networks, after several iterations.

Probit network loading requires a larger computational effort than logit
loading. As shown in Section 11.2, however, it alleviates some of the problems
associated with logit-based loading models.

11.4 ANNOTATED REFERENCES

The STOCH algorithm for applying the logit model to transportation net-
works was suggested by Dial (1971). Subsequently, the algorithm was incor-
porated in the UMTA (1976) Transportation Planning System, which is a
battery of computer programs supported by the Urban Mass Transportation
Administration of the U.S. Department of Transportation.

The logit approach to stochastic network loading has since been criti-
cized by many authors based on the arguments given in Section 11.2. These
authors include Mayberry (1970), Schneider (1973), Burrell (1976), Florian and
Fox (1976), and Daganzo and Sheffi (1977).

The application of the probit model to stochastic network loading prob-
lems was suggested by Daganzo and Sheffi (1977), who showed that this model
does not suffer from logit's drawbacks. Sheffi and Powell (1981) oper-
ationalized and tested the Monte Carlo simulation algorithm for probit net-
work loading.

Several other stochastic loading models have been suggested in the
literature. Von Falkenhausen (1966) suggested an assignment based on log-
normal distribution of link times, while Burrell (1968) suggested one based on
a discrete-uniform distribution. Both of these methods use Monte Carlo simu-
lation. Daganzo and Sheffi (1977) evaluate these approaches and compare
them to probit-based assignment. Other authors, such as Gunnarson (1972)
and Tobin (1977), developed variants of the STOCH algorithm which were
intended to alleviate some of the drawbacks of the logit model mentioned in
Section 1.1. The resulting models, which are not strictly logit-based, are
reviewed and evaluated by Sheffi (1979).

11.5 PROBLEMS

11.1. Using the algorithm description in Section 11.1, develop a detailed flowchart of
the single-pass STOCH algorithm. Discuss the list-processing techniques that
should be considered in coding this algorithm.

_ _ __� __ _ _ __ _ __I_� __�__II

306

Chap. 11 Stochastic Network Loading Models

11.2. Write a computer program that accepts a network coded in forward star form
and a set of O-D trip rates, and performs a (single-pass) STOCH assignment.
The output of the program is the set of link flows.

11.3. Show that the STOCH algorithm generates a logit assignment by following
explicitly the steps of the algorithm. (In other words, show that Eq. [11.7] holds.)

11.4. Apply the single-stage STOCH algorithm to the network in Figure 11.la and
find the resulting flow pattern. Assume that the link travel times are as shown in
Figure 1.la but the travel time on links 4-. 5 and 5- 6 is 3 rather than 1.
Assume further that the trip rate from node 1 to 9 is 1000 trips per hour and the
trip rate from node 1 to 6 is 500 trips per hour.

11.5. Develop a formula for calculating a(from - t), x(), and X(°), for probit-based
network loading. With this formula the variance of the estimated link flows can
be calculated without storing the entire sequence of link flows (see the algo-
rithm's description following Eq. [11.18b]).

11.6. Write a detailed flowchart of the simulation-based probit loading model de-
scribed in Section 11.2. (You may want to solve Problem 11.5 first.) Following
this flowchart, write a computer program to perform probit network loading.

11.7. Based on the description of Clark's approximation in the Appendix, develop an
expression for the flow on link 2 -- 3 for the network shown in Figure P11.1.
Assume that the O-D flow is q between nodes 1 and 4 and all other O-D flows
are zero. The link flow should be expressed in terms of the link travel times, the
O-D flow, and the probit parameter, f, assuming that T, N(t`, t,.).

ROUTE 1

ROUTE 2

ROUTE 3

Figure P11.1

___ .

307

308 Part IV Stochastic User Equilibrium

11.8. Consider a simple network including one O-D pair connected by two links. The
perceived travel time on link 1 is uniformly distributed between 3 and 6. The
perceived travel time on link 2 is uniformly distributed between 5 and 7 (and is
independent of the perceived travel time on link 1). The O-D volume is 1 unit of
flow.

(a) Calculate, analytically, the flow on each route.
(b) Perform a network loading using 10 iterations of Monte Carlo simulation.

Compare your answer to the results of (a). Use the following sequence of
random numbers: 0.923, 0.425, 0.568, 0.354, 0.320, 0.115, 0.863, 0.744, 0.147,

0.107, 0.587, 0.427, 0.837, 0.803, 0.967, 0.572, 0.225, 0.817, 0.034, 0.289. Use

the first random number for link 1, the second for link 2, the third for link 1,
the fourth for link 2, and so on.

11.9. How can variance-reduction techniques, which are used in many Monte Carlo
simulations, be utilized to expedite the convergence of a probit-based network
loading code? (Note: Variance reduction techniques are explained in almost
every text dealing with Monte Carlo simulation.)

11.10. Suggest a Monte Carlo simulation-based model for conducting a logit assign-
ment. What are the limitations of this approach? What type of distributions of
perceived travel time are amenable to a simulation-based algorithm?

I

The focus of the last two chapters was on the formulation and the solution of
stochastic network loading models. These models assign a set of O-D trip
rates to a transportation network in which the link travel times are fixed (i.e.,
they are not flow dependent). The assignment assumes that route choice is
based on perceived rather than measured link travel times. The travel times
perceived by motorists are assumed to be random variables, the distribution of
which (across the population of motorists) is known. The various stochastic
network loading models discussed in Chapter 11 can each be derived from a
certain assumption regarding the distribution of these random variables (the
perceived travel times).

This chapter introduces the equilibrium dimension into this problem.
Here, the perceived travel times are modeled not only as random variables, but
also as flow dependent. This dependence is accounted for by assuming that the
mean travel time for each link is a function of the flow on that link. In other
words, as in Parts II and III, t = t(xa), notwithstanding the fact that t, =
E[To], where T, is the perceived travel time on link a.

Given the O-D trip rates, {q,)}, the stochastic equilibrium conditions can
be characterized by the following equations:

f = qsPk' V k, r, s [12.1]

where P' is the probability that route k between r and s is chosen given a set
of measured travel times, t. In other words, Pk = P'(t) = Pr (C' < C, V 1 #
k E ,r It), where Ck' is the random variable representing the perceived travel
time on route k between r and s, that is, Ck' = , T, ba, k k, r, s. In addition,

309

.

Part IV Stochastic User Equilibrium

the regular network constraints have to hold, that is,

ta = ta(Xa) V a [12.2a]

Zfk = q V r, [12.2b]

where ta = E[Tj and xa = Lrs x
k fka, k, V a. Note that the choice probabil-

ity is conditional on the values of the mean link travel times at equilibrium. If
these times are known (or fixed), the flow pattern that solves Eqs. [12.1] and
[12.2b] can be determined by a simple stochastic network loading. In this
chapter, however, these times are assumed to be flow dependent, as indicated
by Eq. [12.2a]. Note also that Eq. [12.2b] is automatically satisfied if the path
flows are given by Eq. [12.1] since Zkfk = Zk q,P Pk = q,s k P ,' = q,s, V r, s.

Equation [12.1] characterizes the stochastic user-equilibrium (SUE) con-
dition defined in Section 1.3. At SUE, no motorist can improve his or her
perceived travel time by unilaterally changing routes. This follows directly
from the interpretation of the choice probability as the probability that the
perceived travel time on the chosen route is the smallest of all the routes
connecting the O-D under consideration. At equilibrium (SUE) the measured
travel time on all used paths is not going to be equal. Instead, the travel time
will be such that Eq. [12.1] is satisfied for the equilibrium path flows. These
path flows, in turn, will be associated with link flows that satisfy Eqs. [12.2]
for the equilibrium travel times.

As mentioned in Chapter 1, stochastic user equilibrium (SUE) is a more
general statement of equilibrium than the UE conditions. In other words, the
UE conditions are a particular case of SUE; when the variance of travel time
perception is zero, the SUE conditions are identical to the UE conditions. This
is shown below.

The first step is to write the route choice probability, Pk, in a form that
is applicable to both continuous and discrete perceived travel time distri-
butions. The route choice probability is then defined as

Pr [C < C, V I kt] < Prks < Pr [C' < C, V l : kt] V k, r, s

[12.3]

Using this definition, the SUE condition can be written as follows:

f7;5

Pr [C < C , V l k t] < - <_ Pr [C s < C ', V 1l kit] V k, r, s
qrs

[12.4]

This definition of SUE is applicable both to cases in which the perceived
route travel times, {Crs}, are continuous variables and to cases in which these
variables are discrete. (It is important to note that only in the discrete case is
there a nonzero probability for two or more routes to be tied for the shortest.)
Equation [12.4], then, is a generalization of Eq. [12.1]. In cases where the path
travel times are continuous random variables, the probability that the per-

310

Chap. 12 Stochastic User Equilibrium

ceived travel times on any two paths are equal is zero, and the expression on
the left-hand side of Eq. [12.4] is equal to the expression on the right-hand
side of this equation. In such cases, both sides of Eq. [12.4] hold as an equality
and this equation is identical to Eq. [12.1].

To show that the UE conditions are a particular case of SUE, one has to
examine the case of deterministic travel times (which is obtained when the
perception variance is assumed to be zero). In this case, the perceived travel
times equal the measured travel times (C = c). Also, since the focus of the
discussion is on UE, the travel time should be modeled as a discrete variable
(recall that the possibility of equal travel times is central to the UE definition).
If the path travel times are discrete deterministic variables, two or more paths
can be tied for the shortest, in which case neither side of Eq. [12.4] can hold as
an equality and be used to characterize the equilibrium flow pattern. This
statement is proven below by contradiction.

Consider a case in which two paths between origin r and destination s
are tied for the shortest. In this case,

Pr [c s < c'S, V 1 k t] = 0 for all paths k [12.5a]

If the left-hand side of Eq. [12.4] held as an equality, Eq. [12.5a] would have
implied that f s = 0 V k (that is, the flow on all paths is zero). This means that
condition [12.2b] is violated. Also, under the same circumstances (i.e., when
two paths are tied for the shortest),

Pr [c < F cl" I k t] = 1 for the two shortest paths [12.5b]
P [I • ,V#i =O for all other paths

If the right-hand side of Eq. [12.4] held as an equality, the flow on each one of
the shortest paths between r and s at equilibrium would be equal to q,. This
means that too much flow was assigned to the network and again, condition
[12.2b] would have been violated. Consequently if the perceived path travel
times are discrete and deterministic variables, f[/q, # Pr [C s < Crs, V I k It]
andfk/qrs, Pr [Cs < Cl', V I k t].

To interpret equilibrium condition [12.4] in the deterministic (and dis-
crete) case (i.e., when C = c), note first that the probability statements on both
the right- and left-hand sides of this expression can be either 1 or zero. This is
because the event to which they are assigned can be either true or false when
all path times are deterministic. The flow on a particular path can therefore be
either zero or positive. Two cases can then be distinguished:

1. If f[> 0, it must be that the probability on the right-hand side of Eq.
[12.4] is equal to one. In other words, path k between r and s must be
the shortest path (or one of a set of shortest paths).

2. If f's = 0, it must be that the probability on the left-hand side of Eq.
[12.4] equals zero. In other words, path k cannot be the shortest path,
and there is at least one path shorter than (or as short as) k.

_ __ ___ _ _ _ -

311

Part IV Stochastic User Equilibrium

These conditions can be summarized as follows for every path k, connecting
O-D pair r and s:

f s > 0 implies c <c' s V I k [12.6a]

fs = 0 implies c s > c for at least one l - k [12.6b]

Equations [12.6] define a subset of paths with equal travel times, the
flow on which is positive, and state that the flow is zero on all other paths. The
travel time on all the paths carrying no flow is greater than or equal to the
travel time on the paths that do carry flow. This is equivalent to the definition
of the UE criterion. Consequently, it can be concluded that Eqs. [12.6] state
the UE criterion, meaning that the SUE conditions [12.4] can be regarded as
a generalization of the UE conditions. The latter is obtained from the SUE
conditions if the variances of the perceived path travel times are assumed to be
zero.

Two comments are in order here. First, note that since the formulation of
the SUE conditions given in Eq. [12.1] holds for cases in which the perceived
path travel times are assumed to be continuous variables, it holds for the logit
and probit models discussed in Chapter 11. Second, note that link flows in the
SUE model are random variables, as explained in Section 10.2 in conjunction
with stochastic network loading models. The variables {xa} and {f s} used in
the definition of the SUE conditions are the means of these random variables.

Given the definition of stochastic user equilibrium, this chapter discusses
three topics separately. First, Section 12.1 formulates and investigates a math-
ematical program, the solution of which is the SUE flow pattern. Section 12.2
then describes an algorithmic solution approach to this problem, and finally,
Section 12.3 discusses the convergence of this algorithm and extends the SUE
concept in several directions.

12.1 SUE EQUIVALENT MINIMIZATION

As was the case with all the equilibrium problems discussed in this text, a
direction solution of the stochastic equilibrium equations is difficult. The ap-
proach used, instead, is to formulate a minimization program, the solution of
which is the desired set of equilibrium flows. This section shows the equiva-
lence of the solution of the minimization program and the SUE conditions by
checking the first-order conditions of the program. Furthermore, the problem
is shown to have a unique minimum (even though it is not convex).

Program Formulation

Consider the following minimization problem:

min z(x) = - qr E min {CS} I crS(x) + x, t,(Xa,) - t(co) do
x Is k frse a a Jo

[12.7]

�IPI -- I --�---- _ - ----·--------- - -- � -- -

312

Chap. 12 Stochastic User Equilibrium

The flow pattern that minimizes Eq. [12.7] also satisfies the SUE conditions.
Furthermore, at the solution point, the network constraints are satisfied and
consequently, Eq. [12.7] can be minimized as an unconstrained program.

Before these statements regarding Eq. [12.7] are proved, note that this
objective function includes, in its first term, the expected perceived travel time
function discussed in Section 10.2 (see Eq. [10.29] and the related discussion).
In other words, Eq. [12.7] can be rewritten as

min z(x)= -Z q,, Ss[crs(x)] + E Xata(Xa) t(co) dwo [12.8]
x rs a a

where

S.s[JS()] = E min {C'} I c'(x) [12.9]
k E JrJ,

The conditioning of the random variable C' on c"(x) in Eq. [12.9], implies
that the expectation is taken at a given flow level, x. Two of the properties of
the expected perceived travel time function are important for the analysis that
follows. First, this function is concave with respect to c", and second (see Eq.
[10.31a])t

as = -Prks [12.10]
04'

where P' is the probability of choosing path k between r and s. These proper-
ties are used below to investigate the first-order conditions of program [12.7].
The validity of this formulation is first illustrated, however, for a small exam-
ple.

Consider the simple network shown in Figure 12.1. This network in-
cludes one O-D pair connected by two routes, the measured travel time on
which is given by

c, = 1 + 2f1 time units [12.11a]

ce = 2 +f 2 time units [12.11b]

The total O-D flow is q = 4 (i.e., f, +f 2 = 4 flow units). The stochastic net-
work loading is assumed to be a logit route-choice model with parameter
0 = 1. In other words, at equilibrium,

f e P = C2 + ec-1 c
2 [12.11c]4 e- c' + e TM 1 - e t- c2

f2 = 4 -f 1 flow units [12.11d]

tFor probit route-choice models this property holds only if the variance of the perceived
path travel time is not a function of the mean path travel time. This implies that the probit
route-choice model cannot be based on the assumption that T, N(ta , fita). Instead, the variance
of the perceived link travel time can be defined, for example, as fit., where t is the free flow travel
time on link a, or as fil, where 'l is the link length. As argued in Chapter 11 (see Eq. [11.12] and
the related discussion) such a definition may also constitute a more realistic model of travel time
perception.

____ · �___

313

Part IV Stochastic User Equilibrium

fl Route 1

q=4

Ru 2 Figure 12.1 Network example with two
f2 Route 2 paths connecting a single O-D pair.

where P1 is the probability of choosing the first route. The equilibrium flows
and travel times, in this example, can be found by solving Eqs. [12.11] simul-
taneously. Substituting Eqs. [12.11a] and [12.11b] into [12.11c], and using the
total flow constraint [12.1 ld], Eq. [12.1 Ic] can be expressed as

_i 1
[12.12]4 1 + e(3 f ' - 5)

The solution of this equation can be found, numerically, to be f1 = 1.75t flow
units, meaning that f2 = 2.25 flow units, c = 4.50 time units, and c2 = 4.25
time units. Substituting these path times back into Eq. [12.11c], the result is
P1 = 0.438 and f1 = 1.75 flow units, reaffirming that this is the equilibrium
solution. Note, however, that c c2 at equilibrium; the network is in SUE,
not UE.

The same example can now be solved by using program [12.8]. The
equivalent program for this example can be written as follows:

min z(f,f 2) = -4S[cj(f), c2(f 2)] +f1(l + 2f1) +f 2(2 +f2)

-| (1 + 2co) do - (2 + co) do [12.13a]

Carrying out the integration, this program becomes

min z(ff 2) = -4S[c(f1), C2(f2)] +fI + 1f 2 [12.13b]
Equation [12.13b] has to be minimized in terms of both flow variables, since
the flow conservation constraint is not included in the problem (and thus it
cannot be substituted in). Both derivatives of z(f,f 2) have to vanish at the
minimum. The derivative of z(f,, f2) with respect to f is

az(fl,f 2) 4 aS[cl(f1), C2(f 2)] dcl(f) +
= -4 +2fx

Of, Dcl df 1

S[c1(fL), c2(f2)] is the expected perceived travel time function, however, and
thus aS[. , .]/cl =P 1 (where P1 is given by Eq. [12.11c]). Furthermore, from
Eq. [12.11 a], dcldfi = 2. The first-order condition with respect tof1 is, then,

az(f)ff)= -4P1 2 + 2f = -8P 1 + 2f = [12.14a]
af 1

tMore precisely,f, = 1.750327.

314

Chap. 12 Stochastic User Equilibrium

Similarly, the first-order condition with respect tof 2 can be written as

az(f)
-4P 2 1 +f 2 = -4P 2 +f2 = 0 [12.14b]

af2

To solve Eqs. [12.14], note first that if Eq. [12.14b] is multiplied by 2 and
these equations are added, the result is

-8P 1 + 2fi - 8P2 + 2f2 = 0

Since P1 + P2 = 1, this means that

fi +f 2 = 4 [12.15]

Equation [12.15] states that the flow conservation condition has to hold at the
point that minimizes z(f,,f 2). This shows that, at least in the case of this
example, program [12.13a] can be solved as an unconstrained minimization
and still yield a solution that satisfies the flow conservation constraint.

Once the flow conservation constraint has been established, it can be
substituted into Eq. [12.14a] (or [12.14b]) and the resulting equation can be
solved for ft. First, however, Eq. [12.14a] has to be expressed explicitly in
terms of the logit path choice probability. This expression, after the above-
mentioned substitution, becomes

(-8) 1+ 2f, =
1 + ec(fl) - c2(4 - f l) 2 = 0

or

4
1 + e(3f1 - 5) =f[12.16]

This equation is identical to Eq. [12.12], meaning that its solution isf1 = 1.75
time units and consequently f 2 = 2.25 time units. The solution obtained by
minimizing the SUE objective function is thus identical to the solution ob-
tained by solving the equilibrium conditions directly. Furthermore, the SUE
objective function was minimized as an unconstrained program.

The SUE objective function for this example is illustrated in Figure 12.2.
This figure depicts the contours of z(f, f2) in the two-dimensional space de-
fined by f1 and f 2 . As can be seen from the figure, the function is "well
behaved" with a unique minimum at z(1.75, 2.25) = -9.10. The diagonal line
shown in the figure is the feasible region for the SUE equilibrium problem (not
for the program, which is unconstrained). In other words, it is the line along
which f, +f 2 = 4. As the figure shows, the minimum of the SUE objective
function satisfies the flow conservation constraint, at least for this example.
These characteristics of the minimum of the SUE equivalent minimization are
proved below for general networks.

_______ __ ____

315

Part IV Stochastic User Equilibrium

o

z
0

0
u.

1.0 2.0 3.0

FLOW ON ROUTE 1

Figure 12.2 Contour lines of the SUE objective function for the network example
in Figure 12.1 (Eq. [12.13] with S[c(f)] = -In [e-

c'(x
') + e-¢2(x')]). The line shows

the locus of points meeting the flow conservation condition. Note that the minimum
of the objective function is on the line.

Equivalence Conditions

To prove the equivalence between the solution of the program given in
Eq. [12.8] and the stochastic user equilibrium equations, the first-order con-
ditions of this program have to coincide with the SUE conditions (Eqs. [12.1]).
Furthermore, since the aforementioned program is unconstrained, it should be
established that the flow conservation constraints (Eqs. [12.2b]) hold at the
minimum of this program.

The first-order conditions for unconstrained minimizations require only
that the gradient vanishes at the minimum point. In other words,

Vz(x) = 0 [12.17]

The gradient is taken with respect to x, the vector of link flows. This gradient

316

f,

Chap. 12 Stochastic User Equilibrium

is derived below by focusing on a typical term, az(x)/axb, that is, the partial
derivative of z(x) with respect to the flow on link b.

Program [12.8] includes three separate summation terms. The derivative
of the first term with respect to Xb can be calculated as follows:

ax - q S,,s[c"(x)] = - q, E as,,(c") ac(x)) [12.18]
Oxb -C 4rs SrI~rJX 3 - rs k O2k' OXb

In this expression,

as,(cr)
~a- Pk [12.19a]

following Eq. [12.10]. Furthermore,

ac'(x) a dtb(xb)

cax(ax [t(x)2, = dX(bxk [12.19b]
Using Eqs. [12.19], Eq. [12.18] can be rewritten as

x[E qrrs(') = -E q. E Pk dtbk [12.20]

where dtb/dXb is used to abbreviate dtb(xb)/dxb.

The second term in the objective function is the total measured travel
time. The derivative of this term with respect to Xb is given by

aXb d
ax [rX 0 ta(a)] = tb + Xb db [12.21]

The derivative of the last term in the objective function is

a b[to(do)] = tb [12.22]

The results of Eqs. [12.20] through [12.22] can be combined to express the
derivative of the SUE objective function with respect to a link-flow variable.
This derivative is

az(x) + Xl] dtb V b [12.23]
OXb Lrsk J dXb

(Note that the term "tb," is canceled between Eqs. [12.21] and [12.22].) As-
suming that the link performance functions are strictly increasing (i.e.,
dtb/dxb > 0), this gradient can vanish only if

Xb = qrs Pkrsbb k V b [12.24]
rs k

Equation [12.24] expresses the equilibrium link flows corresponding to the
equilibrium path flows given in Eq. [12.1]. This can be verified by multiplying

317

Part IV Stochastic User Equilibrium

both sides of Eq. [12.1] by 7sk and summing over all paths k connecting all
O-D pairs r-s.

The gradient vector of z(x) can be written explicitly, based on Eq.
[12.23], as

Vz(x)=[- q,,rsP'r + x . Vxt [12.25]

where pr = (..., P, ...) is the vector of path choice probabilities for O-D
pair r-s, A's is the link-path incidence matrix for this O-D pair, and V, t is the
Jacobian of link travel times. The Jacobian matrix includes the derivative of
each link performance function with respect to each link flow (see Eq. [8.25]).
At this point it is assumed that there are no link interactions, and thus V, t is a
diagonal matrix with the terms dt,(xa)/dx, along its diagonal. Equation [12.23]
gives the term in the bth position of the gradient vector.

The gradient of the SUE program can also be taken directly with respect
to the path flows (see Problem 12.2). In this case a typical term would be

zx(f)] dt a bm
afn Y (-qmpon +pf~n) I , 1, m, n [12.26]

1f " a dx . a,

At the point that minimizes the objective function, each of these derivatives
has to equal zero, meaning that

f" = q,,, P"l V 1, m, n [12.27]

Both sides of Eq. [12.27] can be summed over all paths connecting O-D pair
m-n, resulting in the condition

fE " f = iTqn [12.28]

since YI pmn= 1. Thus the flow pattern that solves the SUE program also
satisfies the SUE conditions and the flow conservation constraints. Conse-
quently, the SUE flow pattern can be obtained by minimizing the SUE pro-
gram.

Uniqueness Conditionst

The usefulness of the SUE equivalent minimization program would be
limited if it did not have a unique minimum. To demonstrate uniqueness, it is
sufficient to show that the Hessian matrix of the SUE objective function is
positive definite, implying that the program is strictly convex. This matrix
is calculated below by concentrating on a typical term, a2z(x)/axb ax,.

tThis section can be skipped without loss of continuity.

_ _II _II_ 1�1 _ _ �sll _�_I I� ���

318

Chap. 12 Stochastic User Equilibrium

Using Eq. [12.23] as a starting point, the second derivative of z(x) can be
calculated as follows:

_az(x) _aP aC aXb dtb

aXb a L rs k I Cs a a db

+[E E qrs Pk Cb, k + Xb d
rs kP' +X dxb dxa

From the link-path incidence relationships note that

ac dta
ac dXa aI [12.29a]

axb _ if a = b
xa 0 otherwise

Substituting the relationships in Eqs. [12.29] into the second derivative above,
this expression can be written as

az'(x)
axa aXb

q rs rks d tb bs , (b , + dtb
rs k l ac Xb Xb b, dXb

+ -E E qrs.kb'k + Xb, d for a = b [12.30]
rs k k) fo

-E rs , \dx, , for a b
rs k I Dcj dXa

Equation [12.30] gives the term in the bth row and the ath column of the
Hessian matrix of z(x). The Hessian, according to Eq. [12.30], can be ex-
pressed as the sum of three separate matrices (see Problem 12.3), as follows:

V 2 z(X) = qr[(V t Ars) · (-V prs) (V t Ar)T]
rs

+ Vt + Vt. R [12.31]
The Hessian is an A x A matrix, where A is the number of links in the
network. The following matrix notations are used in Eq. [12.31]:

1. V t is the A x A Jacobian of the link-travel-time vector introduced in
Chapter 8. In the case examined here, where no link interactions exist, it
is a diagonal matrix, the ath element of which is dta/dxa.

2. A'T is the link-path incidence matrix for O-D pair r-s introduced in the
beginning of Chapter 3. It is an A x K,s matrix (where Krs is the number
of paths between r and s), including ba', k as a typical term.

3. Vc P' is the Jacobian of the choice probability vector (..., Pk, ...) for

319

Part IV Stochastic User Equilibrium

O-D pair r-s with respect to the path travel times. It is a K,, x K,,
matrix with terms of the form 0Ptk /act.

4. V t is a diagonal A x A matrix which includes terms of the form
d2ta/ dx 2 along its diagonal.

5. R is a diagonal A x A matrix, the ath element of which is

(FS k qr5 k a, k + Xa

The Hessian in Eq. [12.31] can now be analyzed component by component.
The first matrix on the right-hand side of Eq. [12.31] is the following:

E qrs[(V t AS) (- VPs) (V, t AtS)T] [12.32]
rs

To see the nature of this matrix, consider first the choice probability Jacobian,
Vc, ps. This matrix is negative semidefinite since it is the Hessian of the ex-
pected perceived travel time, S,,(c's), which is concave (see the discussion fol-
lowing Eq. [10.30]) in crs. Consequently, (-VP") is a positive-semidefinite
matrix. Equation [12.32] includes then a quadratic form (of nonzero terms)
applied to a positive-semidefinite matrix; it is therefore positive semidefinite
(see Problem 12.3b).

The second matrix in the sum that comprises the Hessian (in Eq. [12.31])
is V, t. This is a diagonal matrix with positive entries (assuming that all link
performance functions are strictly increasing). It is therefore positive definite.
The sum of this matrix and the above-mentioned one is a positive-definite
matrix (since it is the sum of a positive-semidefinite and a positive-definite
matrix).

The third matrix in the sum on the right-hand side of Eq. [12.31] is the
product of two separate matrices. The first one, V2 t, is a diagonal matrix with
positive terms (assuming that the link performance functions are convex). The
second matrix in the product, R, includes terms such as [-rs, k qr, Prkak +
xa] along its diagonal. These terms can be either positive or negative. Thus the
last matrix is not, in general, positive definite. Note, however, that as the
equilibrium point is approached (Xa - ,r, ,k q,, Pk6a, k)- 0 and the last
matrix vanishes. This means that at the point that satisfies the SUE equations,
the SUE equivalent program is strictly convex. (The Hessian at this point is
positive definite.) At all other points, however, the Hessian of z(x) is the sum of
a positive-definite matrix and an indefinite matrix (i.e., a matrix that can be
either positive or negative definite) and is therefore indefinite. The only con-
clusion from this evidence is that the equilibrium point is, in fact, a local
minimum. It is not possible to conclude that other local minima do not exist.

To prove that the SUE point is the only minimum of the SUE program,
a simple transformation of the performance functions can be used. Let x(ta)
denote the inverse of ta(xa); this inverse exists since ta(xa) is monotone. The
inverse function, Xa(ta), is increasing for all positive t and positive for all

320

Chap. 12 Stochastic User Equilibrium

t > tins where tra in = t(O). A link performance function and its inverse are
shown in Figure 12.3a and b, respectively.

The SUE program can be posed as a function of t rather than of x, by
introducing the change of variables xa = x(t) into Eq. [12.7]. The objective
function then becomes

z(t)= - qr, E min {C'kl + E x(to)ta- | v d,(v) dv [12.33]
rs a a n dv

This expression, after integration by parts, reduces to

z(t)= -C qrE min {C'sicr") + j xa(v) dv [12.34]

The reader is asked (in Problem 12.4) to work the details of the change of
variable leading to Eq. [12.33].

The gradient of z(t) is given by

Vz(t) = -Y q,,PsArs + x [12.35a]
rs

A typical term of this gradient is

az(- - s Pka, k + [12.35b]
at, rs k

travel
time

t (0)

t (x)

(a)

flow

tlow

Figure 123 Inversion of a link per-
formance function: (a) a link performance

[b)

function; (b) the inverse of the per- tmin travel
formance function in (a). time

__· · __

321

Part IV Stochastic User Equilibrium

Comparing Eq. [12.35b] with [12.23] (or Eq. [12.35a] with [12.25]), note that
the gradients of z(x) and z(t) always have the same signs and vanish at the
same points. Furthermore, the Hessian of z(t) is given by

V2z(t) = E qs(A')(-VcP'NAs)T + V,x [12.36]
rs

This expression is the sum of two matrices. The first one is a positive-
semidefinite matrix, as can be shown by the reader following the aforemen-
tioned arguments regarding matrix [12.32]. The second matrix in the sum,
Vt x, is diagonal with the nonzero terms being dxa(to)/dta, V a. Since xa(ta) is
increasing, these terms are all positive and the matrix V,(x) is positive definite.
The Hessian of z(t), V2z(t), is therefore positive definite since it is the sum of a
positive-definite and a positive-semidefinite matrix. This means that z(t) is
strictly convex, having a single stationary point which is its minimum.

The functions z(x) and z(t) are related by a monotonic transformation. In
other words, each point of z(x) corresponds to one and only one point of z(t).
Furthermore, the gradients of both functions always have the same sign and
vanish at the same points. The gradient of z(t), however, vanishes only once, at
the minimum of z(t). It must be, thei., that z(x) also has a unique minimum at
this point.

This establishes the uniqueness of the minimum of z(x). This function is
strictly convex at the vicinity of the minimum but not necessarily convex
elsewhere. Nevertheless, its local minimum is also a global one.

12.2 SOLUTION ALGORITHM

Section 12.1 described the SUE equivalent minimization program. This pro-
gram is given by (see Eq. [12.7])

min z(x) = - qsE min {C s}I crs(x) + X t(X) - t(co) d)

[12.37]

As shown in that section, the flow pattern that solves this program also
satisfies the SUE conditions. Furthermore, the program has only a single
minimum. This section looks at algorithmic solution approaches to the mini-
mization of program [12.37].

As mentioned in Chapter 4, the basic algorithmic step of most mini-
mization procedures can be written as

xn+1 = x" + a. [d" [12.38]

where x" is the value of the decision variable vector (the link flows in this case)
at the nth iteration, oa, is a scalar representing the move size, and d" is a
descent direction vector computed at x".

The gradient vector of the SUE objective function is given by Eq.
[12.25]. A natural descent direction can be the one opposite to the direction of

322

Chap. 12 Stochastic User Equilibrium

the gradient, that is,

dn= [qrs . prs . ST _ Xn]. Vt

A simpler descent direction can be defined by dropping the Jacobian, to wit,t

d" = Z qs . pr-S. frST_ Xn [12.39a]
rs

This vector is obviously a descent direction as can be shown by taking the dot
product of d" and the gradient, and demonstrating that Vz(x")· dT < 0 (see
Problem 12.6). Each component in this descent vector is given by

d = E qr I ka,k x [12.39b]
rs k

In the expressions above, P's = (..., Pk",...) is the vector of route choice
probabilities at the nth iteration. Each component of this vector is given by

rs" = rs(crs") = Pr (C s < Cr', V Il Cr") V k, r, s [12.40]

The descent direction components in Eq. [12.39b] are defined as the
difference between two quantities. It can therefore be written in a form that
parallels the one used to describe the descent direction of the convex combi-
nations method (see the discussion following Eq. [5.6]). Let {y"} be a set of
auxiliary variables, where

ya = q, P rsk 4a V a [12.41]
rs k

In other words, {y"} is the set of link flows obtained by a stochastic network
loading Which is based on the set of path travel times {crs' } (see Eq. [12.40]).
Using this variable, the components of the descent direction can be written as

do = y- _ x V a [12.42a]

or, in vector form, as
d" = y" _ xn [12.42b]

Typically, most algorithms would search for the minimum of the objec-
tive function along the descent direction. This minimum would then be defined
as the next (trial) solution. The distance (along the descent direction) from the
current solution point (x") and that minimum, is the move size, a,.

This iterative process of finding the descent direction and minimizing the
objective function along this direction cannot be easily carried out for the SUE
program in Eq. [12.37]. The reason is twofold. First, the determination of the
descent direction requires, at every iteration, a stochastic network loading (see
Eq. [12.41]). In some cases, unfortunately, the link flows can only be esti-
mated, rather than computed accurately. For example, a probit network load-
ing can be carried out only by using Monte Carlo simulation. Regardless of

tThis direction is the negative gradient of objective function z(t) in Eq. [12.34] (see Eqs.
[12.35]). Consequently, it is a descent direction for that problem as well. Thus, the algorithm
described below can be regarded as a form of a steepest descent method for program [12.34].

____._.._

323

Part IV Stochastic User Equilibrium

how many times the simulation procedure is repeated (and the flow averaged),
the resulting link flows are still random variables which can only be regarded
as estimates of the actual link flows. In such cases, the vector of auxiliary link
flows, y", is a random variable, meaning that the direction vector is random.
Consequently, the direction vector computed at a particular iteration may not
point at a descent direction (even though on the average it is a descent vector).
Such a search direction, which is not always a descent direction, may cause
difficulty in applying any descent method.

The second difficulty with the application of a standard descent algo-
rithm to the minimization of the SUE program is that the move size cannot be
optimized since the objective function itself is difficult to calculate. The SUE
objective function [12.37] includes the terms S,,c's(x)], the expected perceived
travel time between each O-D pair, where (see Eq. [12.9])

Sr,,[c'(x)] = E[min {C[} I c'(x)] [12.43]

The expected perceived O-D travel time can only be formulated in terms of
paths and its calculation requires, therefore, path enumeration. Alternatively, it
can be estimated by a simulation process similar to the one used to compute
the choice probabilities (in the case of probit models). Such calculations, how-
ever, are computationally very time consuming. Furthermore, it would mean
that the value of the objective function will be a random variable, making the
line search very difficult and in many cases infeasible. (Why?)

The next section describes an algorithm that can be used to minimize the
SUE program despite all these difficulties.

Method of Successive Averages

The algorithm described in this section is known as the method of suc-
cessive averages (MSA). The method is based on a predetermined move size
along the descent direction. In other words, a, in Eq. [12.38] is not determined
on the basis of some characteristics of the current solution. Instead, the se-
quence of move sizes a,, 2, ... is determined a priori.

For this method to converge, the function to be minimized has to satisfy
several conditions. These conditions require that the objective function be
twice continuously differentiable and that its gradient vanishes only once in
the feasible region (which, in the case analyzed here, is unconstrained). In
addition, the algorithm has to satisfy the following requirements: The search
direction has to be a descent vector and the sequence of move sizes has to
satisfy the following two conditions:

I, = [12.44a]
n=1

2< 0 I [12.44b]
n=1

324

Chap. 12 Stochastic User Equilibrium

If both the objective function and the algorithm satisfy those requirements, the
algorithm will converget to the minimum of that objective function. Fur-
thermore, the sequence of solutions will converge to the minimum even if a
random direction vector, D", is used at every iteration, provided that E[D"] is
strictly a descent direction. In other words, the algorithm will converge if the
search direction is a descent vector only on the average. Consequently, in cases
in which the descent direction is not known with certainty, an unbiased esti-
mate of this direction can be used at every iteration.

One of the simplest move-size sequences that satisfies both conditions
[12.44] is the sequence used by the MSA, which is

, = - [12.45]
n

With this sequence, the nth iteration of the algorithm would be

Xn+l = X+ dn [12.46a]
n

Using the search direction definition in Eq. [12.42b], this algorithmic step can
be written as

xn+l = Xn + - (yn _ xn) [12.46b]
n

where y = Ers q,, prsn ArST (see Eq. [12.41]). Equation [12.46b] means that
the solution at each iteration is the average of the variables y in all the
preceding iterations. In other words,

n-1 1xn+1 n + yn
n n

n-ln-2 n n-i 1 1n-1
xn-1 + ±yn-1 + _ yn

n n-1 n n-1 n

n 2 n -
_ _ (yn-1 + yn)

n n

1 n
y [12.47]

n 1=1

This is the source of the algorithm's name, the method of successive averages.
The random search direction, D, used with this algorithm places an

additional responsibility on the MSA procedure. On the one hand, the algo-
rithm has to converge to the minimum (as in any other minimization), and on
the other hand, it has to dissipate the errors introduced by the use of a
random search direction. The conditions set forth in Eqs. [12.44] can be
interpreted in light of these two requirements.

tMore precisely, the sequence of solutions will converge almost surely to the minimum.

__I_ __

325

Part IV Stochastic User Equilibrium

Equation [12.44a] guarantees that the algorithm will not stop prema-
turely (i.e., before the minimum has been reached). Although ,n is monotoni-
cally decreasing in n, the algorithm has the potential, at every iteration m, to
move from the current point, x", to any other feasible point, and in particular
to the minimum, x*. This happens since condition [12.44a] also means that

an, = 0c for any positive integer m [12.48]
n =m

This would not be true if the sequence used were, for example, an = 1/n2, in
which case the algorithm might terminate before the minimum is reached.
Condition [12.44a] is met, though, for an = 1/n and the algorithm would
therefore converge when this sequence is used to determine the move size.

The flow pattern at the nth iteration is a random variable if the search
direction is random. This random variable is denoted here by X' = (..., Xa,
...).t Equation [12.44b] guarantees that the variance of this random variable
will diminish as the iterations progress. To demonstrate how this reduction
works for the series an = /n, consider the general iteration shown in Eq.
[12.46b], which leads to the average in Eq. [12.47]. The random component is
introduced into x by the Monte Carlo simulation process used to compute
the choice probability in Eq. [12.41]. The auxiliary link flow at the nth iter-
ation is a random variable denoted Y, V a. Equation [12.47] means that the
variance of each component of X", var (X'), is given by

1 -1

var (X) (n1)2 var (Y-) [12.49]

where var (Yt) is the variance of the ath component of the auxiliary solution at
the Ith iteration. This variance of Yn is clearly bounded even if the variance of
the distribution of the link travel times is very large. The reason is that the
Monte Carlo simulation used to calculate {Yn} draws perceived travel times,
not flows. The auxiliary flow that a link can carry is bounded from below by
zero, and from above by the sum of the O-D flows. The variance of Y' is thus
bounded by some value, a2 < c. This means that

1 n-1

var (X,) < (n 1)2 2 [12.50]

Clearly, the right-hand side of Eq. [12.50] approaches zero as n grows, mean-
ing that the variance approaches zero as the algorithm progresses.

As mentioned above, it is sufficient that the search direction be a descent

tThis random variable should not be confused with the random variable discussed in the
last part of Section 10.2 (see Eqs. [10.36] and [10.40]). There, the randomness was rooted in the
perception of travel time. A realization of that variable was the travel time as perceived by an
individual. Here, the emphasis is on the random search direction. X" is random since the search
direction from x"- l, D"- 1, is a random variable. These two sources of randomness are, however,
intimately related. The random variable discussed here can be looked upon as an estimate for the
mean of the random variable discussed in Section 10.2, given the travel-time distribution.

_Il�-·-�--·C -�-�-- .. -�I�-·--II iP--··-·ll ----- -

326

Chap. 12 Stochastic User Equilibrium

direction only on the average for the algorithm to converge. When the choice
probabilities are computed with Monte Carlo simulation, the stochastic net-
work loading will generate an unbiased estimate of the search direction. This
will be the case regardless of how accurate the simulation is (i.e., regardless of
how many simulation iterations are performed).

The MSA algorithm can now be summarized as follows:

Step 0: Initialization. Perform a stochastic network loading based on a
set of initial travel times {t°}. This generates a set of link flows {xa}. Set n = 1.

Step 1: Update. Set t = ta(x,), V a.

Step 2: Direction finding. Perform a stochastic network loading pro-
cedure based on the current set of link travel times, {t,}. This yields an auxili-
ary link flow pattern {ya}.

Step 3: Move. Find the new flow pattern by setting
n+1 nXao = xa + (1/n)(y - x).

Step 4: Convergence criterion. If convergence is attained, stop. If not,
set n = n + 1 and go to step 1.

This algorithmic framework can be applied in conjunction with any
stochastic network loading model. The auxiliary link flows are obtained in
step 2, from the path choice probabilities, that is,

Yo = E E qr ps(c rs"),F.S [12.51]
rs k

If the perceived link travel times are assumed to be, for example, normally
distributed, {Pk(cr)} in Eq. [12.51] follow a probit model. In other appli-
cations, {Pks(c'")} may follow a logit model and be calculated by using the
STOCH algorithm. Other stochastic network loading models can also be used.
In fact, this algorithm will work even for the deterministic UE case, in which
the flows, {Ya}, are obtained by an all-or-nothing assignment. Even though the
move size is not optimized (as is the case with the convex combination algo-
rithm) the MSA procedure will converge to the correct UE solution. This
convergence, however, will be slower than the convergence of the convex
combinations method.

The initialization step can be based on the free-flow travel times. In other
words, t = t(0O), V a, as was the case with many of the other algorithms
described in this book.

The convergence criterion of the MSA poses some difficulties. Due to the
nature of the sequence {n}, it can be argued that the sequence {x"} is "forced"
to converge. Consequently, stopping criteria that are based on the relative
change in link flow may be misleading when used to indicate convergence of
the MSA. This, however, does not turn out to be a problem in applications,
where the MSA can be set to terminate after a predetermined number of

��

327

Part IV Stochastic User Equilibrium

iterations. Alternatively, a convergence criterion can be based on the rate of
the reduction in the objective function values between successive iterations.

A more serious problem in this context is that the convergence of the
MSA is not monotonic. This results both from the random search direction
(which may, sometimes, point in a direction in which the objective function
increases) and the fixed move size (which may "overshoot" the reduction in
the objective function even if the search direction is a descent vector). A
convergence measure that is generally monotonically decreasing can, however,
be obtained by basing the convergence measure on the flow in the last several
iterations. In this case, let x denote the flow average over the last m iterations,
that is,

= (X + X1 + . + Xn-m+l)
1m

=- 'x a 1 [12.52]
m l=o

where the "offset," m, is fixed a priori. (Note that this criterion can be used
only for n > m.) In applications, a value of m = 3 may suffice. Thus conver-
gence criteria that are based on flow similarity can be used in conjunction with
x". For example, criteria such as

A (x:+ 1 _ :Z)a

-< c [12.53]

a

perform reasonably well. Similarly, a convergence criterion that is based on
the values of the objective function in the last few iterations can be used.

The last comment regarding the MSA algorithm has to do with the
move-size sequence itself. The sequence a, = 1/n is not the only one that
satisfies Eqs. [12.44]. In general, any sequence such that

a = [12.54]
k, + n

where k1 is a positive constant and k2 is a nonnegative constant, can be used.
In this case, k1 determines the magnitude of the move, whereas k2 acts as an
offset to the starting step. The sequence ar. = 1/n is obtained, naturally, by
setting k1 = 1 and k2 = 0.

Example

Consider the simple network shown in Figure 12.4. This network in-
cludes two links (routes) connecting one O-D pair. The link performance
functions are given by

t, = 1.25[1 + (][12.55a]

328

Chap. 12 Stochastic User Equilibrium

Link 1

Link 2

.J
r-

6

5

4

3

2

1

x

FLOW

Figure 12.4 Network example with two paths connecting a single O-D pair.

t2 = 2.50 1 + [12.55b]

where x, is measured in vehicles per hour and t, in minutes. The O-D trip rate
is q vehicles per hour (veh/hr). The particular SUE model used here is based
on a logit route-choice model. The equilibrium condition is therefore

x 1 1
q 1 1+ e °(1t2) [12.56]

Assuming that q = 4000 veh/hr and 0 = 1.0 min-', Eqs. [12.55] and [12.56]
can be solved simultaneously to give x1 = 1845 veh/hr.

This problem can now be solved by using the method of successive
averages. Note that the equivalent SUE minimization does not even have to
be formulated, since it is never used explicitly in the solution procedure. The
move-size sequence used in this example was C,, = 3/n (obtained by setting
k, = 3 and k2 = 0 in Eq. [12.54]).

Figure 12.5 displays the value of xn at each of 30 iterations performed.
The first observation from this figure is that the convergence pattern of the
algorithm is relatively smooth and "well behaved." This result is promising
because it can be expected that the characteristics of large networks will
enhance the convergence rate. In large networks, each link is used by flow

_ __�__�� �_�I�

329

Part IV Stochastic User Equilibrium

.

c

3
-o

0 5 10 15 20 25 30

ITERATIONS

Figure 12.5 Convergence pattern of the MSA for the network in Figure 12.4; the
case of relatively large perception variance (0 = 1.0) and relatively high congestion
level (q = 4000).

between many O-D pairs at each iteration and the errors tend to cancel each
other.

A second observation that can be made from this figure is that at the first
iteration, the flow pattern is infeasible in terms of the network constraints. At
this point x1 = 4400, a flow that is larger than the entire O-D flow.t This,
however, does not impede the convergence of the algorithm, which returns
immediately to the feasible region.

In general, the algorithm can be expected to converge faster with lower
values of q and 0. Lower values of q indicate low congestion, implying small
changes in the mean travel time between successive iterations. Low values of 0
indicate large perception variance. Under such circumstances the mean travel
time is less important and the perception variance plays a more important role
in the flow determination. (At the limit, when 0-- 0, the mean travel time is
immaterial in determining the equilibrium flow pattern.) Figure 12.6 demon-
strates this effect by depicting the convergence pattern at a lower O-D flow
rate (q = 2000 veh/hr). The algorithm now converges at the fourth iteration
(compared to the twentieth one before). If the variance would have been lower
(i.e., higher value of 0), convergence would have been slower, as indicated by
the convergence rate for q = 2000 veh/hr and 0 = 2.0 min - depicted in
Figure 12.7. Convergence here is achieved only at the seventh iteration.

tThe choice of the particular move-size sequence for this example was intended to create
such an effect, so that the point discussed here can be demonstrated.

I· _

330

G= 1.0
q 4000

Chap. 12 Stochastic User Equilibrium

e= 1.0
q, 2000

0 10 15 20 25 30

ITERATIONS

Figure 12.6 Convergence pattern of the MSA for the network in Figure 12.4; the
case of relatively large perception variance (0 = 1.0) and relatively low congestion
level (q = 2000).

= 2.0

q 2000

0 10 15 20 25 30

ITERATIONS

Figure 12.7 Convergence pattern of the MSA for the network in Figure 12.4; the
case of relatively small perception variance (= 2.0) and relatively low congestion
level (q = 2000).

21

.E 11

3

0

2000

1500

1000
S

0

0

500

0

_

331

Part IV Stochastic User Equilibrium

12.3 MORE ABOUT STOCHASTIC USER
EQUILIBRIUM

This section extends the discussion of SUE and the MSA in several directions.
First, the application of the MSA to probit-based SUE is explored. This
application involves some computational trade-offs which are investigated in
the first part of this section. The second part of the section extends the SUE
framework to include link interactions. The last part looks at the possible
differences between SUE and UE flow patterns, suggesting some guidelines for
methodology selection. This discussion leads to a mention of a combined UE
and SUE model.

Computational Trade-offs for Probit-Based SUE

When the MSA is applied to the solution of probit-based SUE problems,
the algorithm involves two types of iterations. The first type are the sam-
pling/assignment iterations associated with the stochastic network loading al-
gorithm. These can be termed "inner iterations." The second type are the
equilibrium iterations, which can be termed "outer iterations."

An interesting question here is what is the number of inner iterations
that should be used (per outer iteration) so that the algorithm would be the
most efficient. Clearly, if the number of inner iterations is large, the descent
direction computed at every outer iteration will be more accurate and the
algorithm will converge in a smaller number of outer iterations. The compu-
tational costs of traffic assignment over realistic-size networks, however, are
not only a function of the number of outer iterations. Instead, these costs are a
function of the number of all-or-nothing assignments executed. Consequently,
the computational costs are proportional to the total number of (inner x
outer) iterations.

The trade-off described here is very similar to the one discussed in Sec-
tion 8.2 with regard to the diagonalization algorithm for solving UE problems
with interdependent flows and travel times. In that case, the algorithm consist-
ed of repeated solutions of standard UE problems (referred to as subproblems)
each requiring an interative solution approach. The issue there was to deter-
mine the accuracy with which these subproblems need be solved, so that the
overall algorithm would be the most efficient. As in the case discussed here, the
computational costs were directly proportional to the total number of all-or-
nothing assignments performed.

To get some intuition regarding the number of inner iterations that
should be used in the case of probit SUE problems, the two-link network
model shown in Figure 12.4 can be solved with varying the number of inner
iterations per outer iteration. The probit assumptions made in this case were

T, - N(tj, PtO) [12.57a]

T2 - N(t 2 , Pt°2)

332

[12.57b]

Chap. 12 Stochastic User Equilibrium

cov (T,, T2) = 0 [12.57c]

where is the variance of a road segment of unit travel time under free-flow
conditions. The equilibrium conditions are

xl = q Pr (T < T2)

X2 = q - x,

[12.58a]

[12.58b]

as before.
Figures 12.8 through 12.10 show the convergence rate of the MSA by

depicting x1 versus the number of all-or-nothing assignments performed. In all
cases the figures are drawn for q = 3000 veh/hr and B = 0.5. Figure 12.8 shows
the convergence rate with 20 inner iterations per outer iteration. Convergence
is achieved, in this case after, say, 80 to 100 all-or-nothing assignments. Figure
12.9 depicts the convergence pattern with five inner iterations per outer iter-
ation. In this case, the same degree of convergence is achieved after 40 to 60
assignments. Figure 12.10 depicts the convergence pattern with only one inner
iteration per outer iteration. This figure displays the best convergence pattern.
Convergence is achieved after 20 to 40 all-or-nothing iterations.

It is interesting to note that the conclusion here is similar to the one
reached with regard to the diagonalization algorithm. In both cases it is best
to use the minimum amount of computational effort on the intermediate (or

3000

2500

2000

a91
0
0
0

u

1500

1000

500

0

20 inner iterations
per outer iteration

0 10 20 40 60 80 100 140 180

ALL-OR-NOTHING ASSIGNMENTS

Figure 12.8 Convergence rate of the probit-based MSA for the network in Figure
12.4 (with q = 3000 and = 0.5); the case of 20 simulation (inner) iterations per
equilibrium (outer) interation.

__

333

Part IV Stochastic User Equilibrium

5 inner iterations
per outer iteration

I I I I I I I I I I _

3000 -

2500-

2000-

1500 -

1000-

500-

0
10 20 40 60 80 100 120 140 160 180 200

ALL-OR-NOTHING ASSIGNMENTS

Figure 12.9 Convergence rate for probit-based MSA for the network in Figure
12.4 (with q = 3000 and : = 0.5); the case of five simulation iterations per equilibri-
um iteration.

3000-

2500-

-

c 2000-

0o

1500

inner iteration
per Outer iteration

10 20 40 60 80 100 120 140 160 180 200

ALL-OR-NOTHING ASSIGNMENTS

Figure 12.10 Convergence rate for probit-based MSA for the network in Figure
12.4 (with q = 3000 and = 0.5); the case of a single simulation iteration per
equilibrium iteration.

334

E

0

0
0

I I I I I . I

l1(][- -L--)

Chap. 12 Stochastic User Equilibrium

sub-) problems. In the diagonalization algorithm case this means that the
streamlined algorithm discussed in Section 8.2 would be preferred to the orig-
inal algorithm, as argued in that section. In the case of probit-based SUE
problems and the MSA, it is best to use a single drawing of perceived travel
time from each link, coupled with a single all-or-nothing assignment, at every
outer iteration.

The convergence patterns demonstrated for the small example used in
this case are indicative of the same trend in larger networks. The main differ-
ence between the network example used here and the larger networks is that
convergence is faster for larger networks. The number of all-or-nothing assign-
ments required for solving SUE problems over large networks may be about
two or three times higher than the number of assignments required to solve
standard UE problems over the same networks. In other words, it may re-
quire, say, 10 to 12 all-or-nothing assignments in cases where the UE problem
would require 4 to 5 assignments.

SUE with Link Interactions

The formulation of the equivalent SUE program assumes that the travel
time on each of the network links is a function of the flow on this link only. As
mentioned in the introduction to Chapter 8, however, there are many cases in
which this assumption does not hold.

As in the deterministic case, there is no equivalent minimization formu-
lation that can be used to solve SUE problems with a general (asymmetric)
link interaction pattern. If, however, the Jacobian of the link performance
function is positive definite, there exists a unique flow pattern that satisfies the
SUE conditions.

SUE problems with asymmetric link interactions can be solved by using
the diagonalization algorithm introduced in Section 8.2. This algorithm pro-
ceeds by fixing all the link interaction terms at their current level at each
iteration. This leads to a standard SUE subproblem which can be solved by
the methods described in Chapter 12. Once the solution of the subproblem is
obtained (in terms of a link flow pattern), all link travel times are updated and
the iterations continue. The algorithm converges when the solution of two
successive iterations is similar.t

This procedure includes two levels of subproblems. The first one consists
of a solution of the SUE program at each iteration, using the MSA. This
problem, in turn, may include a series of inner iterations within each outer
iteration of the MSA, when the underlying network loading model is probit-
based. The problem then is to determine the accuracy required in solving these
subproblems.

As might be expected from the consideration of numerical issues in

tStochastic variations can be smoothed out by using a moving average (see Eq. [12.52]) in
the flow comparisons.

__ ^· __

335

Part IV Stochastic User Equilibrium

Section 8.2 and the first part of this section, it may be best not to solve the
subproblems with great accuracy. In fact, one inner iteration per outer iter-
ation, and one outer iteration per SUE subproblem, may be the best strategy
to follow. The streamlined SUE diagonalization algorithm (for probit and
other simulation-based network loading models) can thus be summarized as
follows:

Step 0: Initialization. Draw a perceived link time, T, for each link,
based on t = ta(O), V a. Use all-or-nothing (based on {TO}) to obtain a flow
pattern x1 = (..., x1, ...). Set n := 1.

Step 1: Update. Set t = ta(x"), V a. Draw Ta for each link, given t .

Step 2: Direction finding. Perform an all-or-nothing assignment based
on { Tn}. This yields a set of auxiliary link flow {ya}.

Step 3: Move. Set x + 1 = x + (1/nXya - x), V a.

Step 4: Convergence test. If x" + - x", stop. Otherwise, set n:= n + 1
and go to step 1.

This algorithm is similar to the MSA but for one difference; the flow update is
based on all the link flows, due to the interaction effects. The move size in the
foregoing description of the algorithm can be generalized to be kl/(k 2 + n),
where k and k2 are constants (see Eq. [12.54]). The convergence test can be
based on the absolute or relative magnitude of the change in the link flows
between successive iterations (see Eq. [8.36]).

Note on Methodology Selection

As shown in Section 12.1, the SUE equilibrium conditions reduce to the
UE conditions when the variance of the perceived travel times is zero. Thus
the smaller this variance is, the better would a UE model approximate the
results of an SUE model. The UE and the SUE models would be similar also
in cases in which the network is highly congested. The reason for this lies in
the shape of the link performance functions, as explained below.

Consider, for example, the simple two-link network in Figure 12.11.
Assume that the volume-delay curves for this network are

tl 1 for x < 1 [12.59a]

2 - + for x 2 < 1 [12.59b]
1 - X2

as shown in the figure. The total O-D flow is x + x2 = q (which must be less
than 2 flow units for a solution to exist, due to the link capacities). Assume
now that the O-D flow is very high (causing both links to operate close to

_ ___

336

Chap. 12 Stochastic User Equilibrium

Link 1

q oD DE>

Link 2

ta

I-

Figure 12.11 Simple network example

Figure 12.11 Simple network example *a
with two links connecting one O-D pair. 6 1.0
The bottom part shows the link per- 1.6
formance functions. O-D FLOW

their capacity) and that the network is in user equilibrium (i.e., t = t2). At this
point, if one motorist (representing Ax units of flow) switches routes, say from
link 1 to link 2, the travel time on link 1 would drop by At, and the travel
time on link 2 would increase by At2. If the flow is very high on both routes,
the derivative of t(xa) at the UE solution is very large. Consequently, both At,
and At2 are very large and the resulting change in the routes' travel time
would be noticeable by motorists even if the travel time is subject to random
perception error. Therefore, no motorist has the incentive to make such a
switch of routes, and the user equilibrium will also be the SUE solution for the
system.

For a given (finite) perception variance and a given flow increment, Ax,
there is always some level of flow at which the UE and the SUE solutions will
practically coincide for the network example under consideration. Fur-
thermore, as the O-D flow grows, the SUE solution will grow similar to the
UE solution. The reason is that the derivative of the performance functions
grows monotonically as the flow increases.

Figure 12.12 depicts the share of flow on link 1 (xlq) for the network
under consideration, assuming a logit-based path choice model with parameter
0. In other words,

xl_ 1
q 1 + e°(t tt2) [12.60]q - 1 + ee(tl - t2)

The figure shows this share as a function of the total O-D flow, q, for various

337

Part IV Stochastic User Equilibrium

- xlq
z

z

o0

I
n
3
O

q

O-D FLOW

Figure 12.12 The equilibrium share of flow on link 1 versus the O-D flow, as a
function of the logit assignment parameter, for the network in Figure 12.11.

values of 0. The topmost curve (labeled 0 = oo) represents the UE solution of
the system, as a function of q.

This figure clearly demonstrates the growing similarity between the SUE
solution and the UE solution as 0 grows larger. (Recall that large values of 0
imply small variance of the perceived link times in logit models.) The figure
shows also that the SUE and UE flows grow in similarity as q grows, regard-
less of the value of 0. In addition, note that the value of the SUE solution for a
given 0 does not change appreciably between q = 0 and q > 0, as long as q is
small. Similar results hold true for larger networks and in cases in which
congestion is not perfectly uniform.

The conclusion from these observations is that when the network is
uniformly congested, the equilibrium effects are stronger than the effects of
inaccurate travel-time perception. Consequently, the UE solution is a good
approximation for the SUE solution for congested networks. At small values
of q,, the stochastic perception effects are stronger than the equilibrium effects.
Consequently, stochastic network loading models (without any equilibrium
effects) may be used to approximate SUE flow patterns in uncongested net-
works. The SUE approach should be used at intermediate congestion levels
where neither approximation is accurate.

The method of successive averages, when applied to an uncongested
network, will converge in a few (one or two) iterations and thus no special
considerations should be given to this case. As shown earlier in this section,
however, the MSA is slower to converge when it is applied to congested
networks. If the network is very congested, it may be appropriate to use a UE

*

338

Chap. 12 Stochastic User Equilibrium

approximation to the problem by ignoring the stochastic components. The
problem can then be solved by applying the convex combinations method or
any other appropriate algorithm.

Joint Travel Choices and Hypernetworks

Chapter 9 presented an extended network model that can account for
several travel decisions, including the decision to take a trip, the choice of
destination and the choice of mode of travel, in addition to the route choice.
Both mode and destination choices were modeled by using a logit formula.
Probit models, however, are conceptually easier to use since dummy links can
be added to the network in a straightforward manner, making its equivalent
network representation quite intuitive. The impedance on each dummy link
(representing some travel choice such as a mode or a destination) can be taken
directly from the appropriate discrete choice model to be the utility (or disutil-
ity) of the alternative under consideration. In other words, no function inver-
sions are necessary as was the case with the logit model discussed in Chapters
7 and 9.

For example, consider a probit mode choice model, which includes tran-
sit and automobile. The utility functions estimated for the model are (see
Section 10.1)

Utr = 01_-02 t + tIr [12.61a]
Uau = 3 - t + rau [12.61b]

where Utr and Uau are the transit and automobile utility functions, respec-
tively; O, 2, and 03 are model parameters; i and t are the transit and
automobile travel times, respectively; and ,,tr and au are the transit and auto-
mobile utility error terms, respectively. For the probit model, it is assumed
that

('tr, au) MVN [(O, 0), L] [12.62]

where L is the covariance matrix of 4 = (tr,, ,au)-
The joint (probit-based) mode split/traffic assignment program can be

solved by considering the augmented network shown in Figure 12.13 (such a
supernetwork has been termed hypernetwork in the literature). In this figure a

Figure 12.13 Hypernetwork repre-
senting joint (probit-based) modal split
and (UE-based) traffic equilibrium model.

_ · _� _··_

339

Part IV Stochastic User Equilibrium

dummy node, r', is added to each origin, r. This node is then connected to both
the destination, s, by a transit (dummy) link and the origin, r, by an automo-
bile link. The equivalent travel time on the transit link, r' - s, is the disutility
of transit, - Utr = - 1' + 02 t - ,tr. The equivalent travel time on the auto-
mobile link, r r', is the auto disutility, excluding the auto travel time that is
incurred on the basic network. Thus, for this example, t,,, = -Uau = -b3

The equivalent travel time on each of the dummy links is a random
variable. The travel time on the basic links is modeled as a deterministic entity.
Thus the hypernetwork structure exhibits a separation between two types of
links. The dummy links include a random equivalent travel time, but this
travel time is not flow dependent. The basic network links are flow dependent
but not random. This modeling approach thus includes only the most impor-
tant effects for each type of link. It means that, for this example, the mode
choice will be given by a simple probit model. The basic network, however,
will exhibit a standard (deterministic) user equilibrium, given {q,,}. The struc-
ture of the hypernetwork is very similar to the supernetworks discussed in
Chapter 9. The latter concept is based primarily on logit models, while hyper-
networks are based on probit models. In both cases, however, the basic net-
work is augmented by dummy links and/or nodes.t Hypernetworks can be
solved with a double-stage type of algorithm (see Chapters 7 and 9), in which
the direction-finding step is executed as follows:

(a) Compute the minimum-path travel times between all O-D pairs over the
basic network.

(b) Conduct a probit-based stochastic network loading over the hypernet-
work, determining the O-D flows for the basic network.

(c) Assign the O-D flows to the paths found in (a) (over the basic network).

The intricate features of the hypernetwork approach and the details of the
solution algorithm are beyond the scope of this chapter (see references in
Section 12.5). It should be noted, however, that the probit loading in phase 2
can be accomplished with the analytic approximation mentioned in Section
10.1 (simulation is not necessary here) and that the algorithm does not utilize
the fixed-move-size approach of the MSA, but an actual move-size opti-
mization. This approach can also be used with heterogeneous populations of
drivers (i.e., when the probit model includes variables, such as income, which
vary across individuals).

tAlternatively, hypernetworks can be looked upon as a degenerate case of SUE in which
the variance of the perceived travel time on some of the (augmented) network links (the basic
links) is zero, and the mean travel time on other links (the dummy ones) is independent of the
flow.

__ _____ � ___· I_ _·

340

Chap. 12 Stochastic User Equilibrium

12.4 SUMMARY

This chapter discusses a traffic assignment problem in which the link travel
times are assumed to be both random and flow dependent. The randomness of
these travel times stems from the variability in their perception by motorists,
whereas the flow dependency is rooted in congestion phenomena. It is still
assumed that each motorist minimizes his or her (perceived) travel time and
thus at equilibrium no driver can improve this perceived travel time by unilat-
erally changing routes. This is the definition of the stochastic user equilibrium
(SUE), which is formalized in this chapter.

Section 12.1 formulates an unconstrained minimization program, the
solution of which is the SUE flow pattern. The minimum of this program is
unique (even though the program is not necessarily convex). Nevertheless, the
solution of the equivalent SUE program is not straightforward since the objec-
tive function and its derivatives are formulated in terms of paths. Furthermore,
the calculation of the objective functions and its derivatives sometimes in-
volves Monte Carlo simulation, meaning that their values at any iteration may
be subject to random variations.

The method of successive averages (MSA), presented in Section 12.2, is
an algorithm that can be successfully applied in this environment. It converges
even if the search direction is actually a descent direction only on the average,
and it uses a predetermined sequence of step sizes so that the objective func-
tion need not be evaluated at any stage of the algorithm. The speed of conver-
gence of the MSA is influenced by the problem parameters, including the level
of network congestion and the variance of the travel-time perception. Conver-
gence is faster at low congestion level and large perception variance.

The last section of this chapter presents convergence considerations
which imply that for probit SUE problems (in which the network loading is
accomplished in each step via simulation/assignment iterations), it is best to
use only one such iteration per loading step.

The last section also deals with the issue of methodology selection. UE is
a good approximation for SUE in highly congested networks and should
therefore be used in such cases. Thus, in cases in which the SUE problem
involves a considerable computational burden it can be approximated by a
standard (deterministic) UE assignment.

12.5 ANNOTATED REFERENCES

Stochastic user equilibrium was first formulated by Daganzo and Sheffi (1977),
who also show that it is a generalization of the UE criterion. The equivalent
SUE program was developed by Sheffi and Powell (1982), following Daganzo
(1979), who suggested a related formulation for economic equilibria with dis-
crete choice models. Daganzo (1982) also applied his work to SUE problems,

_ · _.___ ·

341

Part IV Stochastic User Equilibrium

using the travel-time-based formulation (see Eq. [12.34]) rather than a flow-
based formulation.

The MSA algorithm has been used for the network equilibrium problem
(UE) as an incremental-assignment-type heuristic by many researchers, includ-
ing Almond (1967) and Fisk (1980) who investigated its convergence. Powell
and Sheffi (1982) provided a formal proof of convergence for the MSA in its
applications to network equilibrium problems, including the UE formulation
and Fisk's (1980) logit-based SUE formulation given in Problem 12.11. Their
proof is based on the general convergence proof for these methods given by
Blum (1954). A detailed discussion of the MSA is provided by Wilde (1964).

The convergence characteristics of the MSA for the SUE problem were
investigated by Sheffi and Powell (1981) using a small test network. The ad-
vantages of using a single inner iteration at each outer iteration of the MSA
were demonstrated by Mimis (1984) for larger networks. Some convergence
results for logit equilibrium problems are reported by Sheffi (1981) and by
Daganzo (1982). The latter reference includes a detailed development of the
SUE approach, including its application to heterogeneous populations and
networks with interacting link performance functions.

The guidelines for methodology selection given in the last section were
suggested by Daganzo (1977b) and investigated by Sheffi and Powell (1981).
The hypernetwork approach of combining UE and SUE models using probit-
based network loading models was developed by Sheffi and Daganzo (1978a,
1980).

12.6 PROBLEMS

12.1. Show that Eqs. [12.6] hold if and only if the UE conditions hold.

12.2. Calculate the gradient of the SUE objective function with respect to path flows
and verify the equivalency between this program and the SUE conditions.

12.3. (a) Consider the Hessian of the SUE objective function, given in Eq. [12.31].
Write out the term in the row corresponding to the ath link and the bth link
in the network. Compare your answer to Eq. [12.30].

*(b) Prove that if H is a positive definite matrix and h is a nonsingular square
matrix, then h. H. HI is a positive definite matrix.

12.4. Show that the change of variable xa = xa(ta) can be used to transform the SUE
program, z(x), into a function of t, z(t) (see Eq. [12.33]). Given that, carry out the
integration to obtain Eq. [12.34].

12.5. Consider a network including two links connecting a single O-D pair. The link
performance functions are

t1(x,) = 2 + 0.01x,

t2(x 2) = 1 + 0.02x2

The total O-D flow is x1 + x 2 = 6 and the stochastic network loading model is

·--·- - -·I I*1�- I -- I I II-

342

Chap. 12 Stochastic User Equilibrium

based on the logit formula, that is,

X1 1

X1 + X2 - 1 + e(tl- t 2)

Assume that 0 = 0.5.
(a) Formulate the SUE equivalent minimization.
(b) Show that the objective function has a unique minimum.
(c) Apply the MSA to this program and show the results of the intermediate

iterations.
(d) Solve the problem analytically and check your answer to part (c).

12.6. (a) Show that d is a descent direction for a function, z if and only if Vz dT < 0.
(b) Show that d" in Eq. [12.39] is a descent direction for program [12.37].

12.7. (a) Devise an algorithm for computing (or estimating) the SUE objective func-
tion for probit-based stochastic assignment.

(b) Discuss the difficulties of conducting a line search over a convex function,
the value of which can only be known with a certain error.

12.8. Describe in detail the modification that you will have to introduce into a stand-
ard UE convex combinations code in order for it to perform the MSA procedure
coupled with (simulation-based) probit assignment.

12.9. Consider the network in Figure P12.1, where

t, = 3

t2 = 5

t3 = 2 + x3

t = 1 + 2x4

q1, = 4

q2,4 = 2

Assume that route choice is governed by a logit model with parameter 0 = 0.3.
(a) Formulate the SUE objective function for this problem in terms of link flows

only.
(b) Find the equilibrium flow pattern.
(c) How will the equilibrium flows change if 0 is greater than 0.3?

12.10. Section 12.3 recommends one inner iteration per outer iteration for probit SUE
problems. How should this recommendation change for (a) uncongested net-
works, (b) congested networks, (c) high variance of travel time perception, and
(d) low variance of travel time perception?

Fiur P13

Figure P12.1

343

344 Part IV Stochastic User Equilibrium

12.11. The program

min z(f) = f f + t(, d
rs k n Jo

subject to

,fr = q V r, s

Xa = fk a, V a
rs k

f >O V k, r, s

has been suggested as an equivalent minimization program for logit-based SUE.
Investigate its first- and second-order conditions. Compare this program to the
formulation given in this chapter.

_·

V

___ I I_ I I ��I __

N U

An equilibrium analysis of a transportation network requires large amounts of
input data. These include the physical layout of the network, the volume-delay
curves, and the demand models used to represent the various travel choices
included in the analysis. These models may include, for example, O-D demand
functions for variable-demand equilibrium problems or modal split functions
for joint mode/assignment equilibrium problems. In addition, most equilibri-
um assignment models require a specification of the O-D trip matrix. Such a
matrix can be developed from a series of demand models (as done in the
traditional four-step urban transportation planning process) or directly from
link data.

This chapter describes some of the background material needed for de-
veloping a data set for equilibrium analysis. Section 13.1 discusses the prin-
ciples behind link performance functions, Section 13.2 explains some funda-
mentals of econometric estimation theory used in calibrating demand models
(such as the multinomial logit), and Section 13.3 outlines a technique for direct
estimation of O-D matrices.

13.1 LINK PERFORMANCE FUNCTIONS

This section introduces some principles of traffic flow theory on which the
derivation of link performance functions is based. It deals separately with
traffic delays on road segments and delays at (both signalized and unsignal-
ized) intersections.

The focus of the discussions in this section is on the connection between

346

_ __ ____� ____ __�

Chap. 13 Background for Developing the Analysis Inputs

traffic models and link performance functions. These functions relate the travel
time on a link to the traffic flow on that link.

Traffic Flow Models

To analyze the traffic flow along a road segment, consider the trajectory
of vehicles' movements as shown in a time-space diagram. Such a diagram (an
example of which is shown in Figure 13.1) is a plot of the movements of one or
more vehicles in time, along a given road segment. The slope of each trajectory
is the speed of the vehicle and the horizontal and vertical distances between
the trajectories of two vehicles give the headway and spacing, respectively,
between these vehicles, as shown in the figure.

The three fundamental traffic characteristics are the flow, the density, and
the speed. All these quantities are defined as averages over a number of ve-
hicles, as follows:

1. Flow (denoted q): average number of vehicles passing a fixed point in the
road per unit of time

2. Density (denoted K): average number of vehicles present at some instant
on a section of the road of unit length

The average speed can be measured either by a stationary observer (recording
and averaging the speed of passing cars) or by averaging the flow of all cars on
a given road segment at some instant. Accordingly, two speed averages can be
defined:

1. Space mean speed (denoted ts): average speed of vehicles along a road
segment at some instant

s

E

Uz

!2

t
TIME [min]

Figure 13.1 Time-space diagram of two vehicles' movements.

_ __ I

347

Part V Input Data

E

u
Uz
I-

n

o

S.

S

~~/1

/

l(f

1

7/
to

t
TIME [min

Figure 13.2 Measuring the fundamental traffic characteristics on a time-space dia-
gram. The horizontal line segment intersects all car trajectories observed at s o for a
length of time indicated by the length of this segment. The vertical segment inter-
sects all car trajectories captured in an aerial photograph of the road segment at
time to.

2. Time mean speed (denoted a,): average speed of vehicles passing through
a given point

Figure 13.2 demonstrates the measurement of the fundamental traffic
characteristics on a time-space diagram. A stationary observer can measure
the flow and the time mean speed at a point, so , while the density and the
space mean speed can be measured (e.g., by means of aerial photography) at
an instant, to. Since traffic characteristics change in time and space, their
measurement is not trivial. The measurement interval has to be not too small,
so that the measured quantities will not be erratic, yet not too long, so that the
interesting variations will not be averaged out.

The equation

q = i, K [13.1]

is known as the fundamental relationship of traffic flow. Usually, the flow is
measured in veh/hr, the speed in miles (or km) per hour, and the density in
veh/mile (or veh/km). Note that the fundamental relationships are expressed in
terms of the space mean speed (which is always less than or equal to the time
mean speed-see Problem 13.2). To exemplify these concepts, consider a 2-km-
long race track with three cars, as shown in Figure 13.3. The speeds of the
three cars are 100, 120, and 140 km/h, respectively. Given these data, all the

1S f

- - - i - - - - o

I -

348

i

Chap. 13 Background for Developing the Analysis Inputs

Point

t•
Figure 13.3 Racetrack example.

fundamental traffic characteristics can be calculated as follows:

1. Density. Three vehicles on a 2-km road mean that K = 1.5 veh/km.

2. Flow. A stationary observer will see, in 1 hour, 50 times the 100-km/h
car, 60 times the 120-km/h car, and 70 times the 140-km/h car. Thus
q = 50 + 60 + 70 = 180 veh/hr.

3. Space mean speed. Observed at an instant, is = ½(100 + 120 + 140) =
120 km/h.

4. Time mean speed. Computed by multiplying the number of times that
each vehicle is observed (in 1 hour), by its speed and averaging, that is,
t, = (50 100 + 60- 120 + 70. 140)/180 = 122 km/h.

Note that these quantities satisfy the fundamental relationship, since q = K,;
also, S, < i, as expected.

The basic premise of traffic flow models is that the speed is a decreasing
function of the density. As the density increases, the spacing between vehicles
decreases and drivers react by lowering their speed. One of the most widely
used traffic models is the following line :t

u(K) = u - f K [13.2]
Kj

where uf is the free-flow speed (which is observed at zero density) and Kj is the
jam density (at which the road exhibits a "parking lot syndrome").

Using this (or any other speed-density curve), the flow can be studied as

tThe original model was estimated by Greenshields to be u = 46 - 0.236K, where the
(space mean) speed is measured in mph and the density is veh/mile.

349

Part V !nput Data

q

K

Figure 13.4 Fundamental diagram of traffic flow for a given road segment.

a function of the density since, in accordance with Eq. [13.1], q = Ku(K). The
plot of q versus K, which is known as the fundamental diagram, is shown in
Figure 13.4. As the figure shows, the flow is zero if the density is zero (K = 0)
or if the road is jammed (in which case u = 0). At some "optimal" density
(Kopt) the throughput is maximized. The flow at this point is known as the
road's capacity.

Any point on the fundamental diagram (such as A in Figure 13.4) repre-
sents a set of possible traffic conditions. The (space mean) speed at this point is
the slope of the line connecting the point to the origin. Traffic situations in
which the density is higher than Kopt represent unstable conditions with no
passing opportunities (such as the conditions in a queue behind a slow-moving
vehicle).

For the linear model given in Eq. [13.2], the fundamental diagram is a
parabola, the equation of which is given by

q(K) = uf K - Uf K2 [13.3]
Kj

The capacity of the road according to this model is urK. This capacity
occurs at K = Kj/2, at a speed of uf/ 2 (see Problem 13.4).

The speed-density model and the fundamental relationship define the
relationships between all three traffic variables. The focus in this book is on
the relationship betwen travel time on a given road segment and the flow on
this segment. Such a function is shown in Figure 13.5, which depicts travel
time versus flow for Greenshield's model given in Eq. [13.2] (see also the
related footnote). The backward turn of this performance curve is not observed
in urban streets, the performance function for which is given by a mono-
tonically increasing curve (see, e.g., Figure 1.8). The reason for this is that most
of the delay in urban networks is due to intersection queueing rather than
interactions among vehicles in moving traffic. As shown in the next two sec-
tions, intersection delay is a monotonically increasing function of the flow.

I

350

Chap. 13 Background for Developing the Analysis Inputs

.' t:

3t

Fioure 13.5 Travel time versus flow for q

Greenshield's speed-density relationships. FLOW [veh/hr/lane]

Furthermore, the magnitude of this delay is substantially larger than the delay
in moving traffic along urban streets.

Delay at Signalized Intersections

To analyze the delay at a given approach to a signalized intersection,
assume that vehicles arrive at the intersection at the rate of 2 veh/hr.t Assume
further that during the green period, vehicles can depart at a rate of p veh/hr
(which is the intersection's capacity).

The cycle time, c, as seen from the approach analyzed, can be divided
into a green period, g, and a red period, r (which can be understood to include
amber time and time lost due to startup delays). Obviously, c = r + g. Figure
13.6 depicts an ("input/output") schematic diagram of the process of automo-
bile arrival to and departure from a signalized approach. It shows the cumula-
tive arrivals to the intersection and the cumulative departures from it. During
the red period the departure rate is zero and vehicles queue in front of the
light. When the signal turns green, vehicles in the queue depart at a rate of #
veh/hr. After time go from the start of the green period, the queue clears. At
this point the arriving vehicles are departing at a rate of i veh/hr, which equals
the arrival rate, until the light turns red again.

The period required for the queue to dissipate, go, is given by (see
Problem 13.6)

g = r - / [13.4]

tin this section, A is used instead of q to denote flow, due to the widespread use of this
notation in the analysis of queueing systems.

_ __ _�
--- ------

351

Part V Input Data

I
3
0o

>

IU

TIME

RED GREEN
Figure 13.6 Input/output//A //// V//////agrams of the process of vehicle arrivals at and depar-

Figure 13.6 Input/output diagrams of the process of vehicle arrivals at and depar-
tures from a signalized approach. The figure shows cumulative volumes versus time,
assuming constant arrival and departure rates.

The quantity i/#u is known in queueing theory as the utilization ratio and is
usually denoted by p. For the queue to dissipate in every cycle, it is required
that go < g, meaning thatt

2 g
< -c [13.5]

Given that condition [13.5] holds the total vehicle time of delay, d, in
each cycle, equals the area of the triangle (the shaded area in the figure), that
is,

d = (r + go)

Ar2

2(1 - p)
[13.6]

The total number of vehicles per cycle is c, and thus the average delay per
vehicle, d, is given by

[13.7]
r2

2c(- p)

Formula [13.7] underestimates the average delay because it does not
account for stochastic variations in the arrival rate. Even though p < g/c,
momentary surges in traffic can cause some vehicles to wait through a full

tIf this condition is not met the queue will grow indefinitely and so would the average
delay.

i __�___�_ __ __�_ _ � _�_�__

352

Chap. 13 Background for Developing the Analysis Inputs

cycle. Furthermore, even at the end of the green phase, after the dissipation of
the queue, momentary variations in traffic may cause queueing and delay.

These considerations can be accounted for by assuming that in addition
to the delay due to queueing during the red phase, the traffic is subject to
random delays. Such random delays can be modeled by using queueing theory
formulas. Assume that an imaginary queueing system is interposed between
the arriving vehicle and the signal. The arrival rate to this queue follows a
Poisson process with mean i veh/hr. The departure rate from this queue into
the signal is constant at a rate v veh/hr (i.e., on the average, it takes 1/v hours
for a single vehicle to depart). Under these assumptions this queueing system
can be modeled as an MID/1 queue.t The average delay per customer in such
a system is given by

R 2

d 22(- R) [13.8]

where R is the utilization ratio for this queue (i.e., R = l/v). To express this
result in terms of the departure rate from the traffic signal, note that the
service rate during the green period is p veh/hr. During the red period, the
departure rate is zero. On the average, then, during the whole cycle the depar-
ture rate is v = p(g/c) veh/hr. The effective utilization ratio is then

R A- [13.9]
g/c

The two components of the average delay per vehicle (d Eqs. [13.7] and
d' [13.8]) can be summed to give

r 2 R 2

- + [13.10]
2c(1 - p) 2(1 - R)

This formula tends to overestimate the delay by 5 to 15%. Consequently, the
transformation = 0.9w can be used to modify the delay formula in Eq.
[13.10] so that will be within 5% of the actual delay. The delay formula
used by traffic engineers was calibrated by Webster on the basis of Monte
Carlo simulations. This formula is

r 2 R2 / 0 c 1/3
w 2(1 -+ -R 0.652) R(2) [13.11]

2c(1 - p) 22(1 -R)

where all times are measured in seconds. The last term in this sum can be
looked upon as a correction factor to Eq. [13.10]. Webster's formula gives
sufficiently accurate results even in cases in which the arrival rate does not
exactly follow a Poisson process.

Figure 13.7 depicts the form of Webster's formula. It shows the delay, in
seconds, as a function of the flow for a cycle of 90 seconds and green times of

tA MID/1 queue is a queue with Markovian (Poisson) arrival process, deterministic service
rate, and one server.

__

353

Part V Input Data

w

ui

U:

u
xu

= 90 secs
60 secs

capacity
/flow
· - X

200 400 600 800 1000 1200
ARRIVAL RATE [veh/hr/lane]

Figure 13.7 Expected vehicle delay at an approach to a signalized intersection as a
function of the arrival rates. The curve depicts Webster's formula (Eq. [13.11]) for a
cycle of 90 seconds, green times of 40 and 60 seconds, and a departure rate of 2.1
seconds per vehicle.

40 and 60 seconds. The departure time is assumed to be 1/# = 2.1 seconds per
vehicle (a value that is typically used in traffic engineering practice). The
capacity of the approach [which is given by u(g/c)] is depicted by the dashed
lines corresponding to g = 40 and g = 60 seconds. As the arriving flow in-
creases and gets close to the approach capacity, the delays grow dramatically,
as is the case with any queueing system. The magnitude of this delay domi-
nates the delay through the approach when this curve is added to the on-street
delay shown in Figure 13.5. Consequently, the link performance function used
in equilibrium analysis is a monotonically increasing function of the flow,
similar in shape to the curves shown in Figure 13.7.

Delay at Unsignalized Intersections

As an example of the derivation of a link performance function for
approaches to unsignalized intersections, consider the delay on a minor ap-
proach of a "T" intersection. The situation is shown in Figure 13.8. The
automobile arrivals on the major road (eastbound) are assumed to follow a
Poisson process with mean veh/hr. The mean flow on the minor (north-
bound) approach is q veh/hr and it is also assumed to follow a Poisson
process. This example assumes that the major road flow has priority over the
minor road flow and thus a vehicle on the minor road will move into the
intersection only if the gap in traffic (along the major road) is sufficiently large.

__� __ _ __ _____ ____ _ �I _______ I_ _·

354

Chap. 13 Background for Developing the Analysis Inputs

Figure 13.8 Example of a "T" intersec- q
tion. The flow from the minor direction
(q) has to yield to the flow in the major
direction (A).

The accepted gap should be larger than some critical gap, which is a funda-
mental concept in the analysis of unsignalized intersections.

The critical gap is the minimum length of time between two consecutive
cars in the major street, which would allow a safe (merging) maneuver for an
automobile in the minor street. Assuming that the critical gap, tr, is the same
for all minor approach drivers, a gap will be accepted if its duration is larger
than tr. Let f(t) denote the probability density function of the major stream
gaps [i.e., fAt)dt = Pr (t < T < t + dt), where T is the duration of a random
gap]. The probability that a certain gap, of duration T, will be accepted,
P(ACCEPT), is given by

P(ACCEPT) = Pr (T > tr) = ft) dt [13.12]

Let p denote this probability.
The number of gaps that a car arriving at the minor street approach will

have to wait until an acceptable gap will appear is a random variable. The
probability that the motorist will have to wait N gaps before an acceptable
gap appears is given by

P(N) = p(l - p)N [13.13]

where p is the acceptance probability given in Eq. [13.12]. Equation [13.13]
describes a geometric probability mass function of N. It is the probability of
rejecting N gaps and crossing on the (N +)st one. The expected number of
rejected gaps is, then,

E[N] - [13.14]

which is the mean of the geometric probability mass function.t
The expected length of the wait is the product of the expected number of

rejected gaps and the expected length of a rejected gap (which is not the same
as the expected length of a random gap). The distribution of the rejected gaps
equals the original distribution of the gaps, conditional on T being smaller

tThe geometric probability mass function is usually defined as the probability of "success"
in the Nth experiment. Note that Eq. [13.13] defines it here to be the success probability on the
(N + 1)st experiment.

355

Part V Input Data

than tr. This distribution, fTI T<,cr(t), is given by

fTIT< ts(t) = ft) [13.15]
f(t) dt

The expected length of a rejected gap is the mean of this distribution, that is,

I tft) dt
E[T I T < tcr] = [13.16]

i fT(t) dt

The expected waiting time E[W], can now be calculated from Eqs.
[13.14] and [13.16] to bet

E[W] = E[N]E[TI T < tr]

tfr(t) dt o tf(t) t
[13.17a]

fr(t) dt fAt) dt
tcr

Since the traffic on the major street was assumed to follow a Poisson process,
the gap distribution, fAt), follows a negative exponential distribution with the
same parameter. Using this distribution Eq. [13.17a] can be easily evaluated;
the mean wait time for an acceptable gap is given by

1 1
E[W] = ec- - tc [13.17b]

This is the expected delay for a car in the minor street, given that it is first in
line. The expected delay for an automobile arriving randomly to the intersec-
tion can be calculated by using queueing theory concepts.

The queue in the minor street can be characterized, using queueing
theory terminology, by a Poisson arrival process (with parameter q), a general
distribution of "customer service time" (in this case it is the time that it takes
to "process" a single car at the head of the queue, or the waiting time for an
acceptable gap), and a single server. This type of queue is known as an M/G/1
queue. The mean waiting time for a "customer" in such a queue, E[D], is
given by a simple expression including the arrival and service rates. When
applied to the case under consideration, the delay for traffic in the minor street
will be given by

qE[W2]
E[D] 2(1 + E[W] [13.18]2(1 - qE[W])

tEq. [13.17a] assumes implicitly that the process of car arrivals in the major street is
without memory. If this assumption is not made the expected duration of the first gap has to be
modified.

356

Chap. 13 Background for Developing the Analysis Inputs

In this expression, E[W] is the expected waiting time for an acceptable gap
(given in Eq. [13.17b]) and E[W 2] is the second moment of this waiting time.
The calculation of this second moment involves lengthy manipulations which
are not repeated here. As it turns out,

E[W2] = E[N 2]E[T T < tcr]2 + E[N] var [T I T < tc,] [13.19]

The reader is asked (in Problem 13.9) to derive the second moment of W
explicitly. Once derived, it can be substituted in Eq. [13.14] to compute the
expected delay to the minor approach traffic.

Figure 13.9 depicts the shape of the performance function for an ap-
proach to an unsignalized intersection (i.e., E[D] as a function of q) for various
values of A and t,,. As expected, the capacity of the minor approach is smaller
and congestion develops faster when is higher (i.e., when the flow in the
major street is heavier and each (minor approach) driver has to wait longer for
an acceptable gap). The same holds true when the value of t,, is higher, in
which case, again, each (minor approach) driver has to wait longer for an
acceptable gap.

The value of the critical gap, t,,, was assumed in this analysis to be the

frnl

X=1000veh/hr
A'1000veh/hr

A= 750vehlhr

/ //
//

/
/

/
/

X= 500 veh/hr

/

C

MINOR APPROACH FLOW [veh/hr]

Figure 13.9 Expected delay at an unsignalized intersection as a function of the
flow. The curve is drawn for various values of the flow in the major direction (A)
and the critical gap (t,,).

30
u

U

LU

'UTa

20

z
'U

1I-z
I-

10
C

q

357

rm&

Part V Input Data

same for all drivers. This can obviously be only an approximation. In order to
measure the distribution of tcr among drivers, the gap acceptance situation can
be looked upon as a discrete choice problem in which the two choices are to
accept a gap (i.e., advance into the intersection) or to wait for the next one.
Observations on drivers' gap acceptance and rejection can be used to calibrate
such a model, from which the distribution of values of tcr across drivers can be
derived. In fact, as shown in the references mentioned in Section 13.5, this
approach can even be used to estimate the tendency of drivers to accept
shorter gaps the longer they wait.

Common Link Performance Functions

Thus far, the material in this section described the analytical backgroup
in traffic flow theory that underlies the development of link performance func-
tions. The formulas used in analyzing urban networks, however, are signifi-
cantly simpler than the intersection delay equations given above. For example,
most studies ignore the interdependence between conflicting flow streams, such
as the one developed above for unsignalized intersections. The reason for using
simplified formulas is that during the equilibrium calculations the link per-
formance functions have to be evaluated numerous times. A complicated func-
tional form thus imposes a significant computational burden on the calcula-
tions.

A simplified function that is often used in practice is the equation devel-
oped by the U.S. Bureau of Public Roads (BPR). This equation is given by

ta t[1 + (,)] [13.20]

In this formula, t and xa are the travel time and flow, respectively, on link a,
ta is the free-flow travel time, and c is the "practical capacity" of link a. The
quantities a and P are model parameters, for which the value a = 0.15 min and
fB = 4.0 are typically used. Note that these values imply that the practical
capacity of a link is the flow at which the travel time is 15% higher than the
free-flow travel time. This does not equal the capacity of the road as defined
before (see Figure [13.4] and the related discussion), that is, the maximum
possible flow through a link.

In contrast with traffic flow theory the BPR curves are not asymptotic to
any capacity value. A function that is asymptotic to a capacity flow was
proposed by Davidson, based on queueing theory considerations. This func-
tion is

t = + J Ca [13.21]

where c is the road's capacity and J is a parameter of the model. As with the
BPR function, t denotes the free-flow speed (i.e., the speed at zero flow).

I

358

Chap. 13 Background for Developing the Analysis Inputs

Davidson's performance function can be easily estimated from field measure-
ments. The parameter J controls the shape of the curve; its effect is shown in
Figure 13.10, which depicts ta/t° versus Xa/Ca. The latter quantity, xa/c,, is
used frequently in traffic engineering and is known as the volume/capacity
ratio.

In principle, the travel time through an urban street should reflect the
sum of the average running time at a given flow level and the average time
spent queueing at intersections, at that flow level. Congestion effects on the
street itself can usually be assumed away, when compared to the magnitude of
the intersection congestion. Consequently, some fixed travel time can be added
to the intersection delay formula in order to use it as a link performance
function. Note, for example, that the capacity of an approach to a signalized
intersection can be only as high as ca(g/C), where co is the capacity of the road
segment leading to the intersection, and (g/c) is the ratio of green time to cycle
time for that approach. Consequently, the intersection congestion effects will
dominate a link's performance long before the segment capacity will be
reached.

As mentioned above, actual studies use simplified performance curves
such as the BPR formula, Davidson's formula, or some other, similar ex-
pression. The BPR formula is used in many studies since it uses flows that are
not restricted by link capacity. This means that the equilibrium algorithm does
not have to be adjusted to maintain flow feasibility on all links, a process that
can slow the algorithm considerably, with no appreciable change in accuracy.

ta/t.
0

LU

I-

9

u,U-

U.`
I

I-

Xa/Ca
0.2 0.4 0.6 0.8 1.0

VOLUME/CAPACITY RATIO

Figure 13.10 Davidson's link performance function; note the effect of the J param-
eter.

359

Part V Input Data

The curves themselves can be estimated directly from observations of
flow and delay or from the more detailed functions. Usually, the road net-
work is divided into several types of streets (classified by factors such as width,
area type, and traffic regulations) and a performance function is estimated for
each type. The methods that can be used to estimate performance function
from the data are identical to the method described in the next section for
estimating demand functions.

13.2 ESTIMATION
OF DEMAND FUNCTION PARAMETERS

As mentioned in the introduction to this chapter, demand functions may be
used within the equilibration process or they may be used exogenously to
generate an O-D matrix for the traffic assignment model. In any event, such
functions have to be estimated, or fitted for each urban area under study.

The demand functions that need to be estimated depend on the scope of
the analysis. In some cases, a variable-demand function (such as the one used
in Chapter 6) will suffice. In other cases modal split, trip distribution, and trip
generation functions have to be estimated. This section describes the consider-
ations underlying some econometric techniques that can be used to estimate
these travel demand functions. The first part describes the well-known least-
squares method, while the second part describes the principles of maximum
likelihood estimation. This exposition leads to the description of the esti-
mation of discrete choice models, in the third part of this section.

Curve Fitting and Least Squares

To demonstrate some of the basic notions of econometric estimation,
consider a travel demand function such as q,, = D(ur). This function gives the
O-D trip rate, q, from the O-D travel time, u,. In order to estimate this
demand function its functional form has to be specified up to a set of parame-
ters whose values are then estimated from data.

The data needed to estimate the model include observations of time (ur,)
and trip rate (qr,) for a group of O-D pairs. A simple example of such a data
set, including six observations, is shown in Figure 13.11a. These data can be
used to estimate the model parameters. The functional form of this model,
however, has to be specified first. The most widespread econometric model
form is the linear one, in which these observations are used to estimate the
parameters 0 and 42 of the equation

qrs = 01 + 042 Ur [13.22]

The most common criterion used to choose appropriate values for 04 and 02

is the minimum sum of squares (or least squares). In other words, the line
given by Eq. [13.22] is chosen so that the sum of the squared vertical distances

360

Chap. 13 Background for Developing the Analysis Inputs 361

qrs

3: 5

4

0 3

6 2

1

q

5.

4

3

2

1

tIrs

Figure 13.11 Curve-fitting example: (a)
the data; (b) the least-squares linear fit;

1 2 A 5 6 7

(a)

. ~. . U ..

O-D TRAVEL TIME

(b)

q r= 4.8-0.6 Ur

., II..or
2 3 4 5 6 7

(c)

-07

II..
(c) the least-squares logarithmic fit. 1 2 3 4 5 6

between the observations and the line is minimized. Formally, the chosen
parameters are the values that minimize the objective function z(41, 02), where

Z(1, 02) = (1 + 021 rs - qrs)2 [13.23]
rs

and where {,s} and {q,s} are the observations included in the data set. The
sum in Eq. [13.23] goes over all the observations. The estimated line (which is
known as the regression line) is shown in Figure 13.1lb. As expected, 2 is
negative; higher travel time means less trips in Eq. [13.22].

The same technique can be used for multivariate regression, in which the
dependent variable (q,s in this case) is a function of several explanatory ("inde-
pendent") variables (such as travel time, u,s, origin population, G,, destination
employment, Es, etc.). The model then might be given by

qrs = 01 + 02 Urs + 03 Gr + 04 Es [13.24]

Again, the set of parameters (, 02, 03, 04) can be estimated from the data
by using the least-squares method. Each observation (or data point) would
include in this case the observed values of all the variables in the model (i.e.,
{hsy }, {4rs }, {Gr }, and {fs}). As mentioned above, linear regression analysis is

-II -- -- - h

Part V Input Data

widely used and computer codes for estimating the parameters of multivariate
regression models are readily available.

The line shown in Figure 13.1lb may fit the data well. This fit does not
mean, however, that the line shown is the correct model of the relationships
between q,s and u,,. Theoretical considerations may suggest that the rate at
which the travel time affects the O-D flow is not constant. This means that the
travel demand model should be nonlinear. An example of such a demand
curve is the function

qrs = (1 Urs [13.25]

Again, the parameters of this curve can be estimated by the least-squares
method.t The resulting curve is shown in Figure 13.11c. Nonlinear equations
can be estimated in the multidimensional case as well, and appropriate com-
puter codes are available (even though it is more difficult to estimate a general
nonlinear model than a linear one).

Maximum Likelihood

The statistical properties of the parameters estimated by the least-
squares method are not always good. Better estimates can usually be obtained
by using the method of maximum likelihood (ML), which provides more sta-
tistical information about the parameter estimates.

The idea behind the ML method is very simple. Given the data and a
specified model, the estimated parameters are the values that are the most
likely to generate the observed data. For example, consider the following set of
realizations of a random number: 83, 72, 92, 77. If these were generated from a
normal distribution, it is unlikely that the mean of this distribution was zero
or 1000. It is more likely that these observations were generated from a distri-
bution with a mean that is close to the observed values. In this case, it is most
likely that these numbers were generated from a normal distribution with
mean equal to 81 (which is the average of the observations). The mechanics of
the ML approach can be explained by means of a simple example.

Consider a process of automobile arrivals at an intersection. In light
traffic, these arrivals follow a Poisson process and the headway distribution
between successive cars follows a negative exponential distribution. In other
words, the density function of the (random) headway, H, is given by

fH(h) = e- h [13.26]

where A is a parameter of this distribution.
The data collected in order to estimate A. in a certain intersection ap-

proach would typically include N independent headway measurements h,

tAlternatively, it can be estimated by using a linear regression if a logarithmic transforma-
tion is used first on the data (i.e., the resulting &0 and 02 are those that minimize .,s (In ~0 +
02 In i,, - In 4q)2.

I _ I_______ ___ __ _� __ __ �� �_�__� �_1

362

Chap. 13 Background for Developing the Analysis Inputs

h2, ... , hN. The probability density function of a single headway is given by
Eq. [13.26], so the joint probability density of observing the entire sample
(assuming that 2 is known) would be

fH, H2 .. H.x(hl, h2 , ... , h,) = e- hie - h2 ... e -AhN
N

= ne- le [13.27]
n=l

This probability can now be looked upon as a function of since in Eq.
[13.27] the data are known but A is not. The resulting function, L(A), is known
as the likelihood function. For the example under consideration this function is
given by

N

L(2) l= e-lhn [13.28]
n=1

As mentioned before, the ML method is based on maximizing the probability
of observing the data. Consequently, the value of A that maximizes L(A) is the
ML estimator for this problem.

Instead of maximizing L(i), it is usually easier to maximize (A))=
log L(A), which is known as the log-likelihood function. Since the logarithm is
a monotonic transformation, both the likelihood function and its logarithm
will have a maximum at the same point. For the example under consideration,

N
L(2) = E (log A - h) [13.29]

The maximum of L() is at the point where dl(A)/dA = 0, or

(-h) = 0

This equation can be rewritten as

N N
- h. =O

or

N 1
= vN - [13.30]

h h
n=1

where h = (1/N) s'=, h,. Equation [13.30] means that the value of A which
maximizes the likelihood function is the inverse of the sample mean, h.

This example shows how the sample can be used to estimate the parame-
ter of a negative exponential distribution. The maximum likelihood method is
used in many statistical and econometric estimation problems. Interestingly,

____����

363

Part V Input Data

when the ML method is used to estimate the parameters of a regression line,t
the result is identical to the least-squares method discussed at the beginning of
this section.

Estimating the Parameters
of Discrete Choice Models

Discrete choice models were reviewed in Chapter 10, which focused on
the logit and probit models. These models give the share of travelers choosing
a certain alternative as a function of the characteristics of all alternatives and
of the individuals making the choice. As explained in Chapter 10, the mea-
sured (systematic) utility function is a function of the attributes of each alter-
native (and of the characteristics of the decision maker). As mentioned there,
the measured part of the utility function also includes some parameters to be
estimated. Expanding on the notation used in Chapter 10, let V(4, a) denote
the systematic utility of the kth alternative (k E 3F), where ak is a vector of
explanatory variables (or attributes) associated with the kth alternative and
is a vector of parameters. The choice function of this alternative is then given
by Pk(, a), where a = (..., ak, ...) is a vector which includes the attributes of
all the alternatives in the model. For example, the logit choice function is the
following:

eVk(, ak)

Pk(4) , a) = eRl(,a) [13.31]

Pk(, a) is the probability that alternative k will be chosen if the attributes of
the alternatives are characterized by a vector a and the model parameters are
4).

The data for estimating the parameters of a discrete choice model in-
clude a simple random sample of observations (where each observation corre-
sponds to an individual making a choice). Each observation consists of the
values of the explanatory variables and the observed choice, which is the
dependent variable in this case (the focus is on estimating the probability of
these choices). Let the observations be designated by n, where n = 1, 2, ... , N.
Accordingly, denote the systematic utility of the kth alternative of the nth
observation by Vkfn(, akn), where akn,, includes the set of attributes of the kth
alternative and the nth person in the sample. Furthermore, let Cn designate the
choice of the nth individual observed in the sample. In other words, c, = k
indicates that the observed choice of the nth individual is alternative k.

The maximum likelihood estimates of the parameters can be obtained by
finding those parameter values that maximize the likelihood of the data. The
probability of observing an individual, n, with a vector of characteristics a is
given by some density function fA(an), where a = (... , ank, ...). The likelihood

tin that case the ML method assumes that the regression line is associated with a nor-
mally distributed error term which causes the variability in the data.

4·" - -- -- -- �---- - -- I -·I -··i

364

Chap. 13 Background for Developing the Analysis Inputs

that the nth person observed in the sample chooses alternative c, given a, is
specified by P,(4, an). This probability, for the logit model for example, is
given by

eVk(4, a,,k)

Pcn(4, a) E evl(* n) [13.32]
e r

The joint probability density that the observed individual will have a charac-
teristics vector an and will exhibit the choice of c, is

f(an, Cn) = Pc,(, a)fA(a) [13.33]

The likelihood of observing the sample is, then, the product (over all n) of
these probabilities. The likelihood function is the same expression, but viewed
as a function of since given the data, the observed values of a, and cn are, in
fact, known for all n. Thus

N

L(4) = l Pc,(4, an)fA(an) [13.34a]
n=l

and

N

L(>) = E log Pc(4, an) + logfA(an) [13.34b]
n= 1

The values of 4 that maximize this log-likelihood function are the ML esti-
mates. Note that the second term on the right-hand side of Eq. [13.34b] is not
a function of . Consequently, it can be dropped from the log-likelihood
function without affecting the maximization.

The maximization of the log-likelihood function can be carried out by
using any of the methods discussed in Chapter 4. For the log-likelihood func-
tion to have a unique maximum, it is sufficient to show that the function is
concave. Unfortunately, it is proven to be concave only for logit models in
which the utility functions are specified to be linear in the parameters, that is,
if in Eq. [13.31] Vk(4, ak) = * a'. Concavity is also proven for certain probit
models in which this condition holds and, in addition, the terms in the covari-
ance matrix are not a function of a. This property is the reason for the
widespread usage of linear specifications of the utility functions of discrete
choice models.

A simple example can illustrate the maximum likelihood estimation of
the parameters of a discrete choice model. Consider a logit model of mode
choice between automobile and transit. To formulate the model, let Vau and Vtr
denote the systematic utility of the automobile and transit alternative, respec-
tively. Also, let t and t denote the respective travel times on the two modes.
The specification of the model under consideration is

Vau = - t [13.35a]

_ �_�_� I

365

Vtr = -t [13.35b]

Part V Input Data

TABLE 13.1 Data for Estimating a Mode Choice
Model

Observed
Travel-Time

Observation Difference, Observed
Number t- t (min) Choice

1 3.0 Automobile
2 0.5 Transit
3 -2.0 Transit
4 1.0 Automobile

where 4p is a parameter of the model. The choice function for transit in this
case, Ptr(b, t, t), is given by

e - 0 1
Ptr(, t,) -ei t e -t 1 +) [13.36]

The automobile choice function, Pau(4', t, t) = 1 - Ptr(0, t, t).
The data for this problem include four observations of travel-time differ-

ences and choices, as shown in Table 13.1. The log-likelihood function for this
problem is then

L((0) = in 1 13) ' + n 1 + n 1 + e-T 30 + e I 1 + e -2 4
Figure 13.12 depicts the values of the log-likelihood versus 4 for this example.
As can be seen from the figure, L() has a maximum for 0* = 1.44. This value,
then, is the ML estimate of 0 for this problem. It can be used to predict the
choice probability for values of (t - t) for which the choice is not observed (see
Eq. [13.36]). Note that the values of the log-likelihood function itself are all
negative, as would be the case for any other discrete choice model. (Why?)

Another type of estimation problem arises when the parameter of a
stochastic network loading model needs to be estimated. (Using the notation
of Chapter 11 this parameter may be 0 for logit-based models or for probit-
based models.) This problem is similar to the estimation of any other discrete
choice model parameter, but in this case it is not practical to use the maximum
likelihood method described in this section. The reason is that the alternatives
to be chosen include all the paths between each O-D pair. The number of
these alternatives on even a modest-size network is extremely large, meaning
that they cannot be enumerated and serve as a basis for an estimation pro-
cedure. Furthermore, in practice, the data usually comprise observed link
flows rather than observed choices of individual motorists. An estimation
technique that can be used in this case is a variant of the least-squares method
mentioned in the first part of Section 13.2. The objective would be to minimize

��I-� ---- � I

366

Chap. 13 Background for Developing the Analysis Inputs 367

L [()
z
0

I-

-4.0

-5.00
-5.0 U .' Z. U O. .. . U . .

PARAMETER VALUES

Figure 13.12 The log-likelihood function and its maximum for the binary logit
example of modal split discussed in the text.

the function

Z(0) = (Xa())- a)2 [13.37]
a

where {(a} is the set of observed network flows, and {x(4)} is the set of flow
variables generated by a network loading model with parameter 0, which is to
be estimated. The objective function in Eq. [13.37], z(o), can be minimized by
using any line-search method. Such a line search is an iterative procedure in
which a flow pattern, {xa,()), is generated at each iteration. The procedure
generating this flow pattern does not involve a stochastic equilibration prob-
lem but rather a stochastic network loading problem (with parameter); the
link travel times used in the calibration process are the observed (measured)
values.

13.3 ESTIMATION OF O-D MATRICES

The travel demand data needed for a complete equilibrium analysis can be
collected by conducting a home interview survey. Typically, each interview will
include a detailed account of all trips made by each member of a household.
The data can then be used to estimate travel demand models such as trip
generation, modal split, and trip distribution equations. These models are
used, in turn, to generate the O-D matrix, which is the input to a traffic
assignment process.

_ ______ ____ ____

I . I I o
n " ^^ n "on an An ;{

Part V Input Data

The data collected this way can be used to estimate the demand func-
tions required for a joint analysis of several travel choice dimensions, as de-
scribed in Part III. In many cases, however, the focus of the analysis is on
traffic assignment with fixed O-D matrix. This type of analysis is applicable
when the effects of the analyzed scenarios on the O-D matrix itself are negligi-
ble or when these effects are independent of the equilibrium travel times and
can be calculated separately. In these cases, the O-D matrix can be estimated
directly from link flows, without first estimating a series of travel demand
models. This possibility may be very attractive since the cost of a home inter-
view survey may reach millions of dollars, while the data needed for direct
estimation may be readily available in many urban areas.

The criterion used to estimate the O-D matrix is the ability of the
chosen matrix to reproduce the observed conditions. The solution of that
problem, however, is not unique; there are many possible O-D matrices that
satisfy this criterion. In other words, usually there are many O-D matrices
which, when assigned to the network, can reproduce the observed conditions.
The second part of this section then looks at the problem of choosing the
appropriate O-D matrix among all those that satisfy the first criterion. The
focus of this section is on the estimation of O-D matrices for the standard UE
assignment. Some extensions are suggested in Problems 13.14 and 13.15.

O-D Matrices That Reproduce Observed
Conditions

As mentioned above, the first problem in estimating O-D matrices is to
make sure that the estimated matrix, when assigned to the network, repro-
duces the observed conditions. The procedure described here assumes that the
observed network is at equilibrium. In other words, the observed link flows
and travel times represent the (observed) UE conditions. The objective of the
solution approach is to find an O-D matrix such that when this matrix is
assigned to the network (using any UE method), the resulting O-D travel
times will be equal to the observed O-D travel times. The solution method is
based on the equivalent minimization concept used throughout this book.

To describe the method, let irs denote the observed travel time between
origin r and destination s. Now consider the following minimization program:

min z(x, q) = E ta(o) do - urqs [13.38a]
a ors

subject to

f = q,, V r, s [13.38b]
k

fkS 2 0 V k, r, s [13.38c]

The link-path incidence relationships are also assumed to hold, as usual. The

·�

368

Chap. 13 Background for Developing the Analysis Inputs

first-order conditions for a minimum of this program can be calculated from
the derivative of the Lagrangian of program [13.38] with respect to the path
flows and with respect to the O-D flow. The derivative of the Lagrangian with
respect to f~ is (c' - u,), where u, is the dual variable associated with the
flow conservation constraint (Eq. [13.38b]). The associated first-order con-
ditions are therefore

(c s - Ur,)f[= 0 V k, r, s [13.39a]

c[- ur > 0 V k, r, s [13.39b]

The second type of first-order conditions is based on the derivative of the
Lagrangian of [13.38] with respect to q,s. This derivative is equal to (- i
+ u,j), meaning that the associated first-order conditions are

i, = u, V r, s [13.39c]

The last of the first-order conditions are, of course, the original constraints,
that is,

Yf = qr5 V r, s [13.39d]
k

fr' > 0 V k, r, s [13.39e]

The first-order conditions (Eqs. [13.39]) mean that the solution of pro-
gram [13.38] is a set of O-D trip rates, which when assigned to the network,
result in a special UE flow pattern. This UE solution is associated with O-D
travel times which are equal to the observed O-D times.

Program [13.38] can be solved by using the convex combinations algo-
rithm. The application of this algorithm to this program is very similar to the
application of this algorithm to the solution of the variable-demand program
analyzed in Section 6.1. As described there, an upper bound constraint such as

q,s < 4,s V r, s [13.40]

has to be added to the program. The direction-finding step of the algorithm
includes the calculation of the minimum path travel time between every O-D
pair (at the current flow level). If the travel time on that path at the nth
iteration, us, is larger than the observed time, s, then the auxiliary O-D flow
variable (corresponding to q), v', is set to zero. If on the other hand, u < 1S,,
then v is set to . The condition u = , indicates convergence.

Choosing the Appropriate Matrix

Unfortunately, program [13.38] is not strictly convex in {q,s}. [Note that
a2z(x, q)/aq 2 = 0, V r, s.] Therefore, it does not have a unique solution in
terms of the O-D variables {q,r}. This nonuniqueness is not surprising since
the underlying problem, that of finding an O-D matrix that produces the
observed link flows, is underspecified. In other words, there are many O-D

__

369

Part V Input Data

matrices that can produce a given set of observed travel times.t The choice
between these matrices can be based on several criteria. The criterion assumed
here is the closeness of the O-D matrix to some target matrix.

The target matrix may be available from past. studies in the same area,
from a crude demand analysis, or from a limited set of direct ("mailback")
questionnaires. In each of these cases the target O-D matrix is not sufficiently
accurate to serve as the matrix upon which the study can proceed. The meth-
odology described in this section can be viewed as a method for enhancing the
target matrix by using observed conditions. The criterion, then, is to choose
the O-D matrix that is closest to the target matrix, yet when assigned to the
network reproduces the observed O-D travel times.t

Let qr* denote the optimal (minimum) value of objective function
[13.38a]. Any of the optimal solutions of program [13.38] satisfies constraints
[13.38b] and [13.38c] as well as

z |ota(co)) do- Z * =ar* [13.41]
a Jo rs

In practice, q* is calculated by solving Eq. [13.38] with the use of an iterative
descent method. The true minimum value of objective function [13.38a] will
always be less than r*, meaning that constraint [13.41] should be expressed as
<*.

Let {q,s} represent the entries of the target O-D matrix. The objective
function of the problem is then to choose a set of O-D flows, {qr,}, which is
closest to {qr,} yet minimizes program [13.38]. This problem can be formu-
lated as the following minimization program:

min z(x, q) = E (qr - 4qrs)2 [13.42a]

subject to

Zfk = qrs V r, s [13.42b]
k

fk > 0 V k, r, s [13.42c]

J ta) do - uY qi 3 < q * [13.42d]

tOne trivial solution to this problem would be to let r be the upstream node and s be the
downstream node of each network link a. The O-D trip rates would then be q,, = X,a where Z is
the observed flow on link a (leading from node r to node s). Such an O-D matrix may be
completely erroneous, yet it satisfies the criterion of reproducing the observed conditions. This
"solution" highlights the need for selecting the best O-D matrix from among all the possible
ones. (Note that in actual cases the particular trivial solution mentioned here will not be feasible
since the set of origins and destinations is a small subset of the set of all nodes.)

tThis statement has to be understood as applicable within some convergence criterion set
for program [13.38]. In other words, this program is solved by using an iterative descent method
and thus its first order conditions (which require that the observed travel times will be repro-
duced) are met only within some convergence tolerance, rather than exactly.

-- I -- �. ------- �._ _ ------- I L _ __�_ __ _� ____ ___ _��_____� _____

370

Chap. 13 Background for Developing the Analysis Inputs

The objective function in this program minimizes the difference between the
O-D trip rates and their target values. Constraints [13.42b] and [13.42c]
ensure that the solution is feasible in terms of program [13.38], while con-
straint [13.42d] ensures that the O-D trip rates which solve program [13.42]
are optimal solutions of program [13.38].

Program [13.42] can be solved by using the method of partial dual-
ization.t This method is based on forming the (partial) Lagrangian of a given
mathematical program, by adding only some of the constraints to the objec-
tive function. In this case, let y denote the dual variable associated with the
(single) constraint [13.42d]. The partial Lagrangian with respect to this con-
straint is

min L(x, q, y) = (q,, - ,)2 + yE ta,(o) do - u i, q,, - r?*

[13.43a]

subject to

f7 = qs V r, S [13.43b]

fk 2 0 V k, r, s [13.43c]

y > 0 [13.43d]

Constraint [13.43d] is added since Eq. [13.42d] is not an equality constraint
and y is therefore restricted to be nonnegative.:

The minimum of the original program is at the stationary point of the
Lagrangian, which is (as mentioned in Chapter 2) a saddle point. The station-
ary point is at the minimum of L(x, q, y) with respect to x and q but at the
maximum of L(x, q, y) with respect to y.

To solve this program, assume that the value of y is given. In this case,
Lagrangian [13.43a] can be minimized with respect to x and q (subject to
constraints [13.43b] through [13.43d]) by using the convex combinations al-
gorithm or any other suitable method. This is no more difficult than solving
program [13.38]. Let the optimal value of Lagrangian [13.43a], given y, be
denoted by L(y) [i.e., L(y) = L(x*, q*, y)]. The correct value of y that should be
used in program [13.43] to minimize L(x, q, y) is y* [i.e., the value of y that
maximizes L(y)]. At this point L(y*) = L(x*, q*, y*) is a saddle point, as re-
quired. The maximization of L(y) is a one-dimensional maximization problem
that can be accomplished by any of the relevant line-search methods. In par-
ticular, a method based on the derivative of L(y) with respect to y can be used.

tThe underlying theory of partial dualization methods is beyond the scope of this text. The
application of the method to this problem is, however, quite simple and may be intuitive.

INote that both the inequality sign in Eq. [13.42d] and the last term in Eq. [13.43a] have
opposite signs as compared to the notational convention used in Chapter 2.

_ __ ___

371

Part V Input Data

This derivative is given by

dL(A) a EX t(x) - irqi,) - 1 * [13.44]

where {x'(y)} and {q(y)} denote the optimal solution of the Lagrangian prob-
lem [13.43] at the mth iteration of the line search.

Note that since tr* denotes the (almost) optimal value of the objective
function of program [13.38], dL(y)/dy in Eq. [13.44] will be positive for small
values of y. The reason is that the problem of minimizing Lagrangian [13.43]
(given y) involves striking a balance between minimizing Zrs (qr, - 4r)2 and
minimizing a J1 ta(Co) do - rs r, q where the balancing factor is y. For
very small values of y the emphasis of the Lagrangian minimization will be on
the first term and the solution will involve an O-D matrix (i.e., a set {q,}))
which is very close to the target O-D matrix. This solution may be far from
optimal in terms of program [13.38] (hence dL(y)/dy will be positive). If, how-
ever, y is very large, the solution of the Lagrangian minimization problem
(given y) will be very close to the solution of program [13.38]. It may, how-
ever, be further from the target O-D matrix.

The solution procedure here, then, is to start with a low value for y and
solve the Lagrangian program [13.43]. The value of y is then increased and
program [13.43] solved again. The process continues in this fashion until
dL(y)/dy is small enough (or negative). The series of solutions of program
[13.43] (given y) which is generated in this process will start from one that is
very close to the target O-D matrix. As y is increased, more and more weight
is given to having a solution (in terms of an O-D matrix) that when assigned
to the network will generate O-D travel times that are close to the observed
ones. The process will terminate when the smallest value of y for which
dL(y)/dy < k (where k is a positive convergence measure) is found. At this
point, the O-D matrix is closest to the target O-D matrix of any of the
matrices that solve program [13.38] (having a solution better than r/* + k). In
other words, it is closest to the target matrix among all those matrices that,
when assigned to the network, reproduce the observed O-D travel times.

13.4 SUMMARY

This chapter describes some of the background necessary to derive the inputs
for a network equilibrium analysis of an urban network. The first section
focused on the derivation of link performance functions.

The time spent traveling along a network link includes both the "run-
ning" time along the road segment represented by the link, and the time spent
queueing at intersections. These two components of the performance functions
can be modeled by using traffic flow theory to model the running time as a
function of the link flow, and queueing theory to model intersection delays. At

__ _I ___�_ __ _ _ __I_ ___ ___��__·

372

Chap. 13 Background for Developing the Analysis Inputs

signalized intersections the delay will be influenced by the signal timing, while
at unsignalized intersections, it is influenced by the cross-street flows. These
derivations generate complicated formulas which, for the most part, are not
used in practice. In applications, these functions are usually approximated by
BPR-type (or other simple) curves.

Section 13.2 deals with the estimation of travel demand functions. It
reviews the least-squares method for estimating the parameters of both linear
and nonlinear regression curves. Then the maximum likelihood method is
reviewed with particular emphasis on the application of this method to the
estimation of discrete choice models. It is interesting to note that the ML
method can be applied to such models, in which the dependent variable does
not have a numerical value. (Instead, it represents a choice.) These demand
functions can be used as part of a global equilibrium analysis, or they can be
used to generate an O-D matrix for a standard (fixed-demand) equilibrium
assignment.

Another approach to the derivation of O-D matrices is outlined in Sec-
tion 13.3. It describes a direct estimation method in which the O-D entries are
developed from observed O-D travel times and a given target O-D matrix.
The estimated O-D matrix is the closest possible to the target O-D matrix,
yet it closely reproduces the observed O-D travel times.

13.5 ANNOTATED REFERENCES

The material of traffic flow theory given in the first part of Section 13.1 can be
found in any traffic engineering book, such as Pignataro (1973). More ad-
vanced treatments of the subject are offered by Drew (1968) and Haberman
(1977). The speed/density line mentioned in conjunction with Eq. [13.2] was
estimated by Greenshields (1934). The race track example mentioned in Sec-
tion 13.1 was suggested by Daganzo. The material on delay at signalized
intersections can be found in Homburger (1982), which is based on the works
of May (1965), Webster (1958), Allsop (1972), and others. The problem of delay
at unsignalized intersections was investigated by Weiss and Maradudin (1962)
and Herman and Weiss (1961), who found delay expressions based on assump-
tions that were more general than the ones used in Section 13.1. The esti-
mation of the critical gap by using probit models was investigated by many
researchers, including Miller (1972), Daganzo (1981), and Mahmassani and
Sheffi (1981).

The BPR curves were suggested by the U.S. Bureau of Public Roads
(1964), while Davidson (1966) based the derivation of his performance function
on queueing theory. Taylor (1977) described a simple technique for estimating
the parameters of Davidson's curve under various conditions. Branston (1976)
surveyed many of the performance functions used in practice, including the
practice of approximating complex functions with BPR-type curves and other
simple functions. Such approximations were used, for example, by Florian and

_ ·

373

Part V Input Data

Nguyen (1978) in the study of the city of Winnipeg. In several other studies,
the performance functions were correlated directly with link characteristics,
such as speed limit, frequency of intersections along the link, and the urban-
ization level. Such relationships were used, for example, in the Metropolitan
Toronto Regional Transportation Study (1967) and by Freeman Fox and
Associates (1972).

The econometric issues mentioned in Section 13.2 can be found in any
statistics or econometric textbook. The application of the maximum likelihood
method to the calibration of discrete choice models is now a standard tech-
nique. The theory and the methods used in this context are described in the
texts by Daganzo (1979), Hensher and Johnson (1981), and Kanafani (1983).

The method for estimating O-D matrices from link data described in
Section 13.3 is based on the work of LeBlanc and Farhangian (1982). Their
work, in turn, follows Nguyen (1977) who suggested the use of program
[13.38] for deriving O-D matrices which, when assigned to the network, gen-
erates the observed O-D travel times. Other researchers suggested different
criteria for choosing among all the O-D matrices that reproduce the observed
link flows. For example, Jornsten and Nguyen (1980) suggested selecting the
O-D matrix with the greatest entropy. The partial dualization method used in
that section is used quite often in large-scale mathematical programming prob-
lems. The related theory and algorithmic approaches are described, for exam-
ple, in the textbook by Lasdon (1970).

13.6 PROBLEMS

13.1. Show that the fundamental relationships of traffic flow [Eq. 13.1] hold. Use a
simple traffic stream at constant speed to develop your argument. Why is the
space mean speed used in these relationships?

13.2. (a) Consider a set of speed measurements u1, u2 , ... , u, of n vehicles passing a
stationary observer during some period, T. Show that the space mean speed
is given by

(1/n) (1/uj)
i=1

What is the time mean speed?
(b) Show that ui < u,.

13.3. The speed-density relationship for a certain road segment is

uf if K < Ko

Us = uf K K if Ko < K < Kj

0 if K > Kj

-I IIIIPI---·IIIIIP-s I -- -·1

374

Chap. 13 Background for Developing the Analysis Inputs

where K is the density, Kj is the jam density, and Ko is the maximum un-
conjested density. Plot the fundamental diagram (i.e., flow versus density) for this
segment. Find the road's capacity and the speed at capacity flow.

13.4. Develop the expression for the road's capacity, the density at which flow equals
capacity, and the speed at that point, for the linear model in Eq. [13.2].

13.5. Some driving instructors advocate the "2-second rule," encouraging drivers to
keep at least 2 seconds behind the car in front. Assuming that all drivers follow
this advice, the spacing between cars is given by

A = I + tu

where I is car length in meters, t = 2 seconds, and au is the space mean speed (in
meters per second). Based on this, find (a) the capacity of the road (in veh/hr),
(b) the speed at capacity (in km/hr), and (c) the jam density (in veh/km). (Hint:
The spacing is the inverse of the density.) (d) Are your results realistic? Explain.

13.6. (a) Verify the expression for go in Eq. [13.4].
(b) Explain why the total delay in a deterministic system is given by the area of

the triangle in Figure 13.6. Then derive the delay expression in Eq. [13.6].

13.7. The service rate of a given toll booth is 60 veh/min. Suppose that the arrival rate
to this booth is 80 veh/min between 5 and 6 P.M. and 40 veh/min thereafter.
Assuming that no queue exists before 5 P.M., use a deterministic input/output
diagram to answer the following questions:
(a) When does the queue start, and when does it dissipate?
(b) What is the maximum queue length, and when does it happen?
(c) What is the maximum waiting time and when does it occur?
(d) What is the total delay?
(e) What is the average delay during the rush period (which is defined as the

time in which there is a queue in front of the booth)?
(f) What is the average delay as a function of the arrival rate?

13.8. A traffic light is planned for the intersection shown in Figure 13.8, where the
flows are 1 = 1000 veh/hr and q = 500 veh/hr. The green splits are set in direct
proportion to the flow, thus g1/g2 = A/q, where gl is the green split on the major
road and g2 is the green split on the minor one. The problem is to set the cycle
length, c, so that the total delay is minimized. Assume further that 10 seconds
are taken from each cycle for pedestrian crossing, amber periods, and "all-red"
period (the sum of these times is known as the lost cycle time by traffic en-
gineers), and that it takes 2.1 seconds for each car to go through the light. Using
Webster's formula, plot the total delay (on both approaches) as a function of the
cycle length and determine the optimal cycle length. Explain your consider-
ations.

*13.9. Derive explicitly the expression for E[W 2] under the Poisson assumptions used
in conjunction with Eq. [13.19]. Then develop explicitly the expression for the
mean delay in the minor approach queue, using Eq. [13.18].

13.10. Fit a BPR curve and a Davidson curve to Webster's delay formula for c = 90
seconds, g = 50 seconds, 1/p = 2.1 seconds, and r = 35 seconds. Explain your
considerations and compare (graphically) the fit of both models (in a plot of the
delay versus A).

_

375

376 Part V Input Data

13.11. Consider the process of maximum likelihood estimation of a discrete-choice
model.
(a) Why are the log-likelihood values negative?
(b) Can you think of a goodness-of-fit measure that can be used to characterize

the "quality of fit" of a discrete choice model?

13.12. (a) Explain in detail the direction-finding step involved in solving program
[13.38] by using the convex combinations method.

(b) Repeat part (a) for program [13.43].

13.13. Derive and explain the first-order conditions of program [13.43].

13.14. Analyze the possibility of using the O-D matrix estimation technique explained
in Section 13.3 for a model of joint mode split and traffic assignment. Discuss
the possibility of a joint estimation of the O-D volumes and the parameter of
the modal split function. Use the supernetwork approach in your discussion.

13.15. Discuss the applicability of the O-D matrix estimation method of Section 13.3
to SUE. In this case, the stochastic network loading parameter has to be esti-
mated as well, as part of the process.

_ ._·__·. __ I ___

Appendix:

Normal Distribution

and Probit Analysis

This appendix reviews some of the characteristics of multivariate normal dis-
tribution functions which are important for probit analysis. It also reviews two
of the methods mentioned in Chapter 10 for evaluating the probit choice
function: Clark's numerical approximation and the Monte Carlo simulation
method.

A.1 MULTIVARIATE NORMAL DISTRIBUTION

The multivariate normal (MVN) density function can be characterized by a
K-vector of means Pi = (, ... , PK) and a (nonsingular, symmetric, positive
definite), K x K covariance matrix, E, where

2
Ul 612 1K

; 21

UK1 UK (K

The covariance matrix of a multivariate normal distribution is often expressed
in a standard form as the correlation matrix, p. The entries of this matrix are
given by Pkl = akl/ak Cl, V k, I where Pkl is known as the correlation coefficient.

A random K-vector, X, is MVN distributed if its density function fx(x) is
given by

fx(x) = (2zrI Il)- K/ 2 exp [-(x - p) -x · (x -)T] [A.1]

377

__ I _ :___

Appendix: Normal Distribution and Probit Analysis

This statement is usually abbreviated by X - MVN (, L), where Ip = E[X]
and L = cov [X]. The diagonal entries of v are the variances of the elements
of X, while the off-diagonal elements express the covariance between these
elements.

An important property of the MVN distribution is that it is closed under
linear transformation. This property means that a linear transformation of a
normally distributed random vector generates a new normally distributed ran-
dom vector. To see the mechanics of the transformation, let Y = (Y1, ... , YL) be
a random L-vector which is related to X by a linear transformation. In other
words,

Y=X m+b [A.2]
where m is a (K x L) matrix of constants and b is an L-vector of constants.
The vector Y is a random variable. The mean vector of Y, E[Y], is given by

E[Y] = It m + b [A.3]

where p = E[X]. The covariance matrix of Y, cov [Y], is given by

cov [Y] = mT. L m [A.4]

where L = cov [X]. Note that E[Y] is an L-vector and cov [Y] is an L x L
matrix, as expected.

If X is a scalar, it is normally distributed if its density function, fx(x), is
given by

x(x) = 2 exp a- 2 J [A.5]

where and a 2 are the mean and variance, respectively, of X. The linear
transformation

Z X-- [A.6]

yields a normally distributed random variable Z, with mean zero and variance
equal to one. The variable Z is known as a standard normal variate.

The cumulative distribution function of a normal variate cannot be ex-
pressed in a closed form. Using the transformation in Eq. [A.6], this cumula-
tive distribution can be expressed in terms of the distribution of a standard
normal variate, known as the standard normal curve:

O(z) = -exp dol

where z is the value that the random variable Z can obtain in a particular
experiment. The values of O(z) for various values of - o < z < oo have been
tabulated and are readily available.

378

Appendix: Normal Distribution and Probit Analysis

A.2 MULTINOMIAL PROBIT MODEL

Assume, as in Section 10.1, that a decision maker is faced with a set, XV, of
alternatives numbered 1, 2, ... , K. Let the utility of the kth alternative be
denoted by Uk. Assume further that

Uk = Vk + k k [A.7]

where Vk is the systematic utility of the kth alternative and k is the random
disturbance term associated with that alternative. The assumption leading to
the probit model is that the vector , = (.., ,K) is MVN distributed with
mean vector zero and covariance matrix E.

The probability that the kth alternative is chosen, Pk, is given by

Pk = Pr (Uk > U1, Vl I E) [A.8]

Substituting Eq. [A.7], the choice probability becomes

Pk = Pr (, < k - Vl + k, V E) [A.9]

This expression involves the calculation of the cumulative MVN distribution
function, which cannot be evaluated in closed form; it involves a multiple
integral (of dimension K - 1) which is difficult to evaluate by standard nu-
merical methods (especially for large values of K). The remainder of this
appendix describes the two methods mentioned in Section 10.1 for evaluating
the probit choice probability. These are the analytical approximation method
and the Monte Carlo simulation method.

Approximation Method

The formulas upon which the approximation method is based were sug-
gested by Clark (see Section 10.1) for the approximation of the first two
moments of the distribution of max (U1 , ... , UK), where the K random vari-
ables follow a joint normal density.

Let U1 , U2 , and U3 be MVN distributed with means V, V2 , and V3,
variances a1 , a] , and a, and correlation coefficients P12, P13, and P23. Then,
if vi is the ith moment about zero of the random variable, max (U1, U2), and
p[U3, max (U1 , U2)] is the correlation coefficient between the new variable
and U3 , Clark showed that

v = VD(y) + V2q4(-y) + a(y) [A.10a]

v2 = (V 2 + a)r((y) + (V2 + 02)F(-7) + (V1 + V2)a(Y) [A.lOb]

and

pEU3 , max (U1, U2)] = 6 1 P1 3 (y) + (2 p 2 3 E(-.Oc]
(v2 - v) 1/2

_ ��

379

Appendix: Normal Distribution and Probit Analysis

where

4(CO) = (2)- 1/2 exp (2) (standard normal distribution)

(w) = 0(t) dt (standard cumulative normal curve)

a2 = al + C2 - 2' 1ar2 P12 (variance of the difference V1 - V2)

and

V1-V 2
a

The distribution of the maximum of U, and U2 can now be approxi-
mated by a normal distribution by using the moments in Eqs. [A.10]. In other
words,

max (U 1, U 2) N(v 1, v 2 - v) [A.11]

This approximation can be used recursively to obtain the approximate
distribution of the maximum of any number of normal variables, by calculat-
ing the mean vector and covariance matrix of [U, ... , UK-2, max (UKl,
UK)] and repeating the process to calculate them for [U1 , ... , max (UK-2,
max (UK-1, UK))], [U1, ... , max (UK-3, max (UK-2, max (UK-1, UK)))], and
so on. If UK is the last variable to be considered, we have after K- 1 iter-
ations the approximate mean of the maximum of the K - 1 variables con-
sidered (denoted Vk), the approximate variance of the maximum (a2k), and
the correlation between this maximum and UK (denoted P-k k). In other
words, the following parameters are known at this point.

V-k = E [max (U1, ... , Uk- l, Uk+l, 1..., UK)] [A.12a]

a2k = var [max (U 1, ... , Uk-, Uk+l, ... , UK)] [A.12b]

P-kk = corr Uk, max (Uk, ... , Uk-1, Uk+19, ... U)] [A. 12c]

It is now possible to calculate the probability that the kth variate is actually
the largest (i.e., the probability that the kth alternative is chosen), Pk, as
follows:

Pk = Pr {Uk > max [U]}

= Pr {[max (U1, . .. , U, Uk,-1,9 U,) - U) < 0}

= k +_ - 2a-kP-k.k) [A.13]

Due to the error introduced by Eq. [A.11], Eq. [A.13] is only approxi-
mate. The accuracy of this approximation was investigated by Daganzo et al.
(1977), Lerman and Manski (1978), and Horowitz et al. (1982).

380

Appendix: Normal Distribution and Probit Analysis

Simulation Method

As explained in Section 10.1, the simulation method for computing the
choice probability is based on the following iteration:

1. Draw a realization of a random MVN distributed vector.

2. Record the largest component of this vector.

The choice probability of each component is then approximated by the fre-
quency with which this component was recorded as the largest. The accuracy
of this method for computing the choice probability increases as the number of
iterations grows.

The only difficulty with this method, when applied to a general MVN
distribution is the Monte Carlo drawing process. Even though it is easy to
generate a single realization from a normally distributed random variable, it is
more difficult to generate a normal random vector with known covariance
matrix. The process can be accomplished with a factorization of the covariance
matrix, a process known as Choleskifactorization.

A factorization consists of finding the "root" matrix, R, of a given
matrix, A, such that

R RT = [A. 14]

The Choleski factorization finds a triangular matrix, R, which satisfies Eq.
[A. 14].t In order to generate a realization, x, from a random vector, X, where

X MVN (, 1) [A. 15]

a vector of standard normal independent random variates, s, can easily be
generated. The distribution of the random variable S (from which s is drawn) is
given by

S - MVN (0, I) [A. 16]

where I is the identity matrix. Now consider the transformation

X = R S + [A. 17]

Using the relationship mentioned at the beginning of this appendix (see Eqs.
[A.3] and [A.4]), the distribution of X can be obtained from the distribution of
S, that is,

E[X] = R 0 + = [A.18a]

cov [X] = R T .I. R = [A.18b]

Thus the transformation

x = R s + [A. 19]

generates a realization, x, from the distribution given in Eq. [A.15].

tThe mechanics of the factorization process can be found in any linear algebra book. It is
also available as a part of many computer libraries.

�I·II c - _ _ - -- - -~ ~ ~ ~ ~ -

381

References

AASHTIANI, H. Z., AND T. L. MAGNANTI (1981). Equilibria on a Congested Transpor-
tation Network. SIAM Journal on Algebraic and Discrete Methods 2(3), pp. 213-226.

ABDULAAL, M., AND L. J. LEBLANC (1979). Methods for Combining Modal Split and
Equilibrium Assignment Models. Transportation Science 13(4), pp. 292-314.

ALLSOP, R. E. (1972). Delay at Fixed Time Traffic Signals I: Theoretical Analysis.
Transportation Science 6(2), pp. 260-285.

ALMOND, J. (1967). Traffic Assignment with Flow-Dependent Journey Times. In L. C.
Edie, R. Herman, and R. Rothery (Eds.) Vehicular Traffic Science, Proceedings, 3rd
International Symposium on the Theory of Traffic Flow, American Elsevier, New
York, pp. 222-234.

ANDERSEN, J. (1977). A Method for the Analysis of Transit Networks. In M. Roubens
(Ed.), Advances in Operations Research, pp. 1-8. North-Holland, Amsterdam.

BECKMANN, M. J., C. B. McGUIRE, AND C. B. WINSTEN (1956). Studies in the Economics

of Transportation. Yale University Press, New Haven, Conn.

BEN-AKIVA, M., AND S. R. LERMAN (1978). Disaggregate Travel and Mobility Choice
Models and Measures of Accessibility. Proceedings, 3rd International Conference on
Behavioral Travel Modelling, Adelaide, Australia.

BLUM, J. R. (1954). Multidimensional Stochastic Approximation Methods. Annals of
Mathematical Statistics 25, pp. 737-744.

BOLLAND, J. D., M. D. HALL, AND D. VAN VLIET (1979). SATURN: A Model for the
Evaluation of Traffic Management Schemes. Working Paper 106, Institute for Trans-
portation Studies, University of Leeds, England.

BOUTHELIER, F., AND C. F. DAGANZO (1979). Aggregation with Multinomial Probit and
Estimation of Disaggregate Models with Aggregate Data: A New Methodological
Approach. Transportation Research 13B(2), pp. 133-146.

382

·Ir------r�� .. __�I ��------------ ------��. --- - ----------· II� ·I--------�_�_ _�9-·--�------L-----� -II��1 -----

References

BovY, P. H. L., AND G. R. M. JANSEN (1981). Network Modelling Effects in Equilibrium
Assignment: An Empirical Investigation. Proceedings, International Symposium on
Frontiers in Transportation Equilibrium and Supply Models, Transportation Research
Center, University of Montreal, Montreal.

BOYCE, D. E. (1981). Editorial Note. Environment and Planning A 13(4), pp. 395-398.

BRADLEY, S. P., A. C. HAX, AND T. L. MAGNANTI (1977). Applied Mathematical Pro-
gramming. Addison-Wesley, Reading, Mass.

BRAESS, D. (1968). Ober ein Paradox der Verkehrsplanung. Unternehmenstorchung 12,
pp. 258-268.

BRANSTON, D. (1976). Link Capacity Functions: A Review. Transportation Research
10(4), pp. 223-236.

BRUYNOOGHE, M., A. GILBERT, AND M. SAKAROVICH (1968). Une Mthode d'affectation

du traffic. Proceedings, 4th International Symposium on the Theory of Road Traffic
Flow, Karlsruhe, West Germany.

BURRELL, J. E. (1968). Multipath Route Assignment and Its Applications to Capacity
Restraint. Proceedings, 4th International Symposium on the Theory of Road Traffic
Flow, Karlsruhe, West Germany.

BURRELL, J. E. (1976). Multipath Route Assignment: A Comparison of Two Methods.
In M. Florian (Ed.), Traffic Equilibrium Methods, Lecture Notes in Economics and
Mathematical Systems 118, Springer-Verlag, New York, pp. 229-239.

CEDAR, A. (1978). Network Theory and Selected Topics in Dynamic Programming. Dekel
Academic Publications, Tel Aviv.

CLARK, C. E. (1961). The Greatest of a Finite Set of Random Variables. Operations
Research 9(2), pp. 145-162.

DAFERMOS, S. C. (1971). An Extended Traffic Assignment Model with Application to
Two-Way Traffic. Transportation Science 5(4), pp. 366-389.

DAFERMOS, S. C. (1976). Integrated Equilibrium Flow Models for Transportation Plan-
ning. In M. Florian (Ed.), Traffic Equilibrium Methods, Lecture Notes in Economics
and Mathematical Systems 118, Springer-Verlag, New York, pp. 106-118.

DAFERMOS, S. C. (1980). Traffic Equilibrium and Variational Inequalities. Transpor-
tation Science 14(1), pp. 42-54.

DAFERMOS, S. C. (1982). Relaxation Algorithms for the General Asymmetric Traffic
Equilibrium Problem. Transportation Science 16(2), pp. 231-240.

DAGANZO, C. F. (1977a). Some Statistical Problems in Connection with Traffic Assign-
ment. Transportation Research 11(6), pp. 385-389.

DAGANZO, C. F. (1977b). Some Research on Traffic Assignment Methodology Selection.
Working Paper 7703, Institute of Transportation Studies, University of California,
Berkeley.

DAGANZO, C. F. (1977c). On the Traffic Assignment Problem with Flow Dependent
Costs-I. Transportation Research 11(6), pp. 433-438.

DAGANZO, C. F. (1979). Multinomial Probit: The Theory and Its Application to Demand
Forecasting. Academic Press, New York.

DAGANZO, C. F. (1981). Estimation of Gap Acceptance Parameters Within and Across
the Population from Direct Roadside Observation. Transportation Research 15B(1),
pp. 1-15.

___._ .. __

383

DAGANZO, C. F. (1982). Unconstrained Extremal Formulation of Some Transportation
Equilibrium Problems. Transportation Science 16(3), pp. 332-360.

DAGANZO, C. F., AND Y. SHEFFI (1977). On Stochastic Models of Traffic Assignment.
Transportation Science 11(3), pp. 253-274.

DAGANZO, C. F., F. BOUTHELIER, AND Y. SHEFFI (1977). Multinomial Probit and Quali-

tative Choice: A Computationally Efficient Algorithm. Transportation Science 11(4),
pp. 338-358.

DANTZIG, G. B., S. F. MAIER, AND Z. F. LANDSDOWNE (1976). The Application of

Decomposition to Transportation Networks Analysis. Report DOT-TSC-OST-76-26,
U.S. Department of Transportation, Washington, D.C.

DAVIDSON, K. B. (1966). A Flow-Travel Time Relationship for Use in Transportation
Planning. Proceedings, Australian Road Research Board, Melbourne, Vol. 3, pp. 183-
194.

DIAL, R. B. (1971). A Probabilistic Multipath Traffic Assignment Algorithm Which
Obviates Path Enumeration. Transportation Research 5(2), pp. 83-111.

DIAL, R. B., AND R. E. BUNYAN (1968). Public Transit Planning System. Socio-Economic
Planning Sciences 1, pp. 345-362.

DIAL, R. B., F. GLOVER, D. KARNEY, AND D. KLINGMAN (1977). A Computational

Analysis of Alternative Algorithms and Labeling Techniques for Finding Shortest
Path Trees. Research Report CCS 291, Center for Cybernetics Studies, University of
Texas, Austin.

DOMENCICH, T. A., AND D. MCFADDEN (1975). Urban Travel Demand: A Behavioral
Analysis. American Elsevier, New York.

DREW, D. R. (1968). Traffic Flow Theory and Control. McGraw-Hill, New York.

EASH, R. W., B. N. JANSON, AND D. E. BOYCE (1979). Equilibrium Trip Assignment:
Advantages and Implication for Practice. TRB Transportation Research Record 728,
pp. 1-7.

EVANS, S. P. (1976). Derivation and Analysis of Some Models for Combining Trip
Distribution and Assignment. Transportation Research 10(1), pp. 37-57.

FEDERAL HIGHWAY ADMINISTRATION (1977). Computer Programs for Urban Transpor-
tation Planning: PLANPAC/BACKPAC General Information Manual. U.S. Depart-
ment of Transportation, Washington, D.C.

FERLAND, J. A., M. FLORIAN, AND C. ACHIM (1975). On Incremental Methods for Traffic
Assignment. Transportation Research 9(4), pp. 237-239.

FINNEY, D. (1964). Probit Analysis. Cambridge University Press, Cambridge, England.
FISK, C. (1980). Some Developments in Equilibrium Traffic Assignment. Transportation

Research 14B(3), pp. 243-255.

FISK, C., AND S. NGUYEN (1982). Solution Algorithms for Network Equilibrium Models
with Asymmetric User Costs. Transportation Science 16(3), pp. 361-381.

FLORIAN, M. (1977). A Traffic Equilibrium Model of Travel by Car and Public Transit
Modes. Transportation Science 11(2), pp. 166-179.

FLORIAN, M. (1981). The Convergence of Diagonalization Algorithms for Fixed
Demand Asymmetric Network Equilibrium Problems. Publication 198, Center of
Transportation Research, University of Montreal, Montreal.

FLORIAN, M., AND B. Fox (1976). On the Probabilistic Origin of Dial's Multipath
Traffic Assignment Model. Transportation Research 10(5), pp. 339-341.

--- C11 --

384 References

FLORIAN, M., AND S. NGUYEN (1976). An Application and Validation of Equilibrium
Trip Assignment Methods. Transportation Science 10(4), pp. 374-390.

FLORIAN, M., AND S. NGUYEN (1978). A Combined Trip Distribution Modal Split and
Trip Assignment Model. Transportation Research 12(4), pp. 241-246.

FLORIAN, M., S. NGUYEN, AND J. FERLAND (1975). On the Combined Distribution-
Assignment of Traffic. Transportation Science 9(1), pp. 43-53.

FRANK, M., AND P. WOLFE (1956). An Algorithm for Quadratic Programming. Naval
Research Logistics Quarterly 3(1-2), pp. 95-110.

FREEMAN FOX AND ASSOCIATES (1972). Speed/Flow Relationships on Suburban Main
Roads. Road Research Laboratory, Report of the Department of Environment, London.

GARTNER, N. H. (1980). Optimal Traffic Assignment with Elastic Demands: A Review;
Part II: Algorithmic Approaches. Transportation Science 14(2), pp. 192-208.

GLOVER, F., D. KARNEY, AND D. KLINGMAN (1974). Implementation and Compu-
tational Comparisons of Primal, Dual, and Primal-Dual Computer Codes for Mini-
mum Cost Network Flow Problems. Networks 4(3), pp. 191-212.

GREENSHIELDS, B. D. (1934). A Study of Traffic Capacity. Highway Research Board
Proceedings, Vol. 14, part I, pp 448-478.

GUNNARSON, S. (1972). An Algorithm for Multipath Traffic Assignment. Proceedings,
PTRC Urban Traffic Model Research Seminar, London.

HABERMAN, R. (1977). Mathematical Models: Mechanical Vibrations, Populations Dy-
namics and Traffic Flow. Prentice-Hall, Englewood Cliffs, New Jersey.

HAN, A. F., AND N. H. WILSON (1982). The Allocation of Buses in Heavily Utilized
Networks with Overlapping Routes. Transportation Research 16B(3), pp. 221-232.

HAUSMAN, J. A., AND D. A. WISE (1978). A Conditional Probit Model for Qualitative
Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Prefer-
ences. Econometrica 46(2), pp. 403-426.

HENSHER, D. A., AND L. W. JOHNSON (1981). Applied Discrete-Choice Modelling. Croom
Helm, London; John Wiley & Sons, New York.

HERMAN, R., AND G. H. WEISS (1961). Comments on the Highway Crossing Problem.
Operations Research 9(6), pp. 828-840.

HOMBURGER, W. S. (ED.) (1982). Transportation and Traffic Engineering Handbook.
Prentice-Hall, Englewood Cliffs, New Jersey.

HOROWITZ, J. L. (1983). Stability of Equilibrium in a Two-Link Transportation Net-
work. 62nd Annual TRB Conference, Washington, D.C., January 1983.

HOROWITZ, J. L., J. M. SPARMANN, AND C. F. DAGANZO (1982). An Investigation of the
Accuracy of the Clark Approximation for the Multinomial Probit Model. Transpor-
tation Science 16(3), pp. 382-401.

HUTCHINSON, B. G. (1974). Principles of Urban Transport Systems Planning. McGraw-
Hill, New York.

JORNSTEN, K., AND S. NGUYEN (1980). On the Estimation of a Trip Matrix from Net-
work Data. Report NITH-MAT-R-79-36, Linkoping Institute of Technology,
Sweden.

KANAFANI, A. (1983). Transportation Demand Analysis. McGraw-Hill, New York.
KNIGHT, F. H. (1924). Some Fallacies in the Interpretation of Social Costs. Quarterly

Journal of Economics 38, pp. 582-606.

KNODEL, W. (1969). Graphentheoreticishe Methoden und ihre Anwendungen. Springer-
Verlag, Berlin.

References 385

KOPPELMAN, F. S. (1976). Guidelines for Aggregate Travel Predictions Using Disaggre-
gate Choice Models. TRB Transportation Research Record 610, pp. 19-24.

LASDON, L. S. (1970). Optimization Theoryfor Large Systems. Macmillan, New York.

LEBLANC, L. J., AND M. ABDULAAL (1982). Combined Mode Split-Assignment and
Distribution-Modal Split-Assignment Models with Multiple Groups of Travelers.
Transportation Science 16(4), pp. 430-442.

LEBLANC, L. J., AND K. FARHANGIAN (1981). Efficient Algorithms for Solving Elastic
Demand Traffic Assignment Problems and Mode Split-Assignment Problems. Trans-
portation Science 15(4), pp. 306-317.

LEBLANC, L. J., AND K. FARHANGIAN (1982). Selection of Trip Table Which Reproduces
Observed Link Flows. Transportation Research 16B(2), pp. 83-88.

LEBLANC, L. J., E. K. MORLOK, AND W. PIERSKALLA (1975). An Efficient Approach to
Solving the Road Network Equilibrium Traffic Assignment Problem. Transportation
Research 9(5), pp. 309-318.

LERMAN, S. R., AND C. F. MANSKI (1978). An Estimator for the Generalized Multi-
nomial Probit Choice Model. 56th Annual TRB Meeting, Washington, D.C.

LUENBERGER, D. G. (1973). Introduction to Linear and Nonlinear Programming.
Addison-Wesley, Reading, Mass.

MAGNANTI, T. L., AND B. L. GOLDIN (1985). Network Optimization. John Wiley & Sons,
New York.

MAHMASSANI, H., AND Y. SHEFFI (1981). Using Gap Sequences to Estimate Gap Accept-
ance Functions. Transportation Research 15B(3), pp. 143-148.

MANHEIM, M. L. (1979). Fundamentals of Transportation Systems Analysis. MIT Press,
Cambridge, Mass.

MANHEIM, M. L., AND E. R. RUITER (1970). DODOTRANS I: A Decision Oriented
Computer Language for Analysis of Multimodal Transportation Systems. HRB High-
way Research Record 314, pp. 135-163.

MAY, A. D. (1965). Traffic Flow Theory-The Traffic Engineer's Challenge. Pro-
ceedings, Institute of Traffic Engineers, pp. 290-303.

MAYBERRY, J. P. (1970). Structural Requirements for Abstract-Mode Models of Pas-
senger Transportation. In R. Quandt (Ed.), The Demand for Travel: Theory and
Measurement. Heath, Lexington, Mass.

MCFADDEN, D. (1973). Conditional Logit Analysis of Qualitative Choice Behavior. In
P. Zarembka (Ed.), Frontiers in Econometrics, Academic Press, New York, pp. 105-
142.

MCFADDEN, D., AND F. REID (1975). Aggregate Travel Demand Forecasting from Dis-
aggregate Behavioral Models. TRB Transportation Research Board 534, pp. 24-37.

METROPOLITAN TORONTO REGIONAL TRANSPORTATION STUDY (1967). Calibration of Re-
gional Traffic Prediction Modelfor the A.M. Peak Period. Toronto, Ontario.

MILLER, A. J. (1972). Nine Estimators of Gap-Acceptance Parameters. G. F. Newell
(Ed.), Proceedings, 5th International Symposium on the Theory of Traffic Flow and
Transportation, American Elsevier, New York, pp. 215-235.

MIMIS, S. (1984). Equilibrium Traffic Assignment Models for Urban Networks. S. M.
Thesis, Center for Transportation Studies, M.I.T., Cambridge, Mass.

MOORE, E. (1957). The Shortest Path through a Maze. Proceedings of the International

I_

386 References

Symposium on the Theory of Switching. Harvard University Press, Cambridge, Mass,
pp. 285-292.

MORLOK, E. K. (1978). Introduction to Transportation Engineering and Planning.
McGraw-Hill, New York.

MURCHLAND, J. D. (1969). Road Traffic Distribution in Equilibrium. Conference Paper,
Mathematical Methods in the Economic Sciences, Mathematiches Forschungsinstitut,
Oberwolfack, West Germany.

MURCHLAND, J. D. (1970). Braess's Paradox of Traffic Flow. Transportation Research
4(4), pp. 391-394.

NAGURNEY, A. B. (1983). Comparative Tests of Multimodal Traffic Equilibrium Meth-
ods. U.S. DOT, Program of University Research Report, Brown University, Provi-
dence, Rhode Island.

NEWELL, G. F. (1980). Traffic Flow on Transportation Networks. MIT Press, Cam-
bridge, Mass.

NGUYEN, S. (1974a). A Unified Approach to Equilibrium Methods for Traffic Assign-
ment. In M. Beckmann and H. P. Kiinzi (Eds.), Traffic Equilibrium Methods, Lecture
Notes in Economics and Mathematical Systems. Springer-Verlag, New York.

NGUYEN, S. (1974b). An Algorithm for the Traffic Assignment Problem. Transportation
Science 8(3), pp. 203-216.

NGUYEN, S. (1977). Estimating an OD Matrix from Network Data: A Network Equilib-
rium Approach, Publication No. 87, Centre de recherche sur les transports, University
of Montreal, Montreal.

PAPE, U. (1974). Implementation and Efficiency of Moore-Algorithms for the Shortest
Route Problem. Mathematical Programming 7(2), pp. 212-222.

PIGNATARO, L. J. (1973). Traffic Engineering: Theory and Practice. Prentice-Hall, En-
glewood Cliffs, New Jersey.

POTTS, R. B., AND R. M. OLVER (1972). Flows in Transportation Networks. Academic
Press, New York.

POWELL, W. B., AND Y. SHEFFI (1982). The Convergence of Equilibrium Algorithms with
Predetermined Step Sizes. Transportation Science 16(1), pp. 45-55.

SAFWAT, K. N. A., AND T. L. MAGNANTI (1982). A Combined Trip Generation, Trip
Distribution, Modal Split and Traffic Assignment Model. Working Paper OR112-82,
Operations Research Center, M.I.T., Cambridge, Mass.

SCHNEIDER, M. (1973). Probability Maximization in Networks. Proceedings, Internation-
al Conference on Transportation Research, Bruges, Belgium, pp. 748-755.

SHEFFI, Y. (1979). A Note on the Turn and Arrival Likelihood Algorithms of Traffic
Assignment. Transportation Research 13B(2), pp. 147-150.

SHEFFI, Y. (1981). Aggregation and Equilibrium with Multinomial Logit Models. Pro-
ceedings, International Symposium on Equilibrium and Supply Models, University of
Montreal, Montreal.

SHEFFI, Y., AND C. F. DAGANZO (1978a). Another "Paradox" of Traffic Flow. Transpor-
tation Research 12(1), pp. 43-46.

SHEFFI, Y., AND C. F. DAGANZO (1978b). Hypernetworks and Supply Demand Equilibri-
um with Disaggregate Demand Models. TRB Transportation Research Record 673,
pp. 113-121.

SHEFFI, Y., AND C. F. DAGANZO (1980). Computation of Equilibrium over Transpor-

_ __�_ ._·

387References

tation Networks: The Case of Disaggregate Demand Models. Transportation Science
14(2), pp. 155-173.

SHEFFI, Y., AND W. B. POWELL (1981). A Comparison of Stochastic and Deterministic

Traffic Assignment over Congested Networks. Transportation Research 15B(1), pp.
53-64.

SHEFFI, Y., AND W. B. POWELL (1982). An Algorithm for the Equilibrium Assignment
Problem with Random Link Times. Networks 12(2), pp. 191-207.

SHEFFI, Y., R. HALL, AND C. F. DAGANZO (1982). On the Estimation of the Multinomial

Probit Model. Transportation Research 16A(5-6), pp. 447-456.
SIMMONS, D. M. (1975). Nonlinear Programmingfor Operations Research. Prentice-Hall,

Englewood Cliffs, New Jersey.

SMITH, M. J. (1979). The Existence, Uniqueness and Stability of Traffic Equilibria.
Transportation Research 13B(4), pp. 295-304.

STOPHER, P. R., AND A. H. MEYBURG (1975). Urban Transportation Modeling and Plan-
ning. Lexington Books, Lexington, Mass.

TAYLOR, M. A. P. (1977). Parameter Estimation and Sensitivity of Parameter Values in
a Flow-Rate/Travel-Time Relation. Transportation Science 11(3), pp. 275-292.

TOBIN, R. L. (1977). An Extension of Dial's Algorithm Utilizing a Model of Tripmaker's
Perceptions. Transportation Research 11(5), pp. 337-342.

TYE, W. B., L. SHERMAN, M. KINNUCAN, D. NELSON, AND T. TARDIFF (1982). Appli-
cation of Disaggregate Travel Demand Models. NCHRP Report 253, Transportation
Research Board, Washington, D.C.

URBAN MASS TRANSPORTATION ADMINISTRATION (1977). UMTA Transportation Plan-
ning System Reference Manual. U.S. Department of Transportation, Washington,
D.C.

U.S. BUREAU OF PUBLIC ROADS (1964). Traffic Assignment Manual. U.S. Department of
Commerce, Washington, D.C.

VON FALKENHAUSEN, H. (1966). Traffic Assignment by a Stochastic Model. Proceedings,
4th International Conference on Operational Science, pp. 415-421.

VAN VLIET, D. (1976). Road Assignment-I, II. Transportation Research 10(3), pp.
137-149.

WAGNER, H. M. (1975). Principles of Operations Research with Applications to Mana-
gerial Decisions, 2nd ed. Prentice-Hall, Englewood Cliffs, New Jersey.

WARDROP, J. G. (1952). Some Theoretical Aspects of Road Traffic Research. Pro-
ceedings, Institution of Civil Engineers II(1), pp. 325-378.

WEBSTER, F. V. (1958). Traffic Signal Setting. Road Research Laboratory Report 39,
Crowthorne, Berkshire, England.

WEISS, G. H., AND A. A. MARADUDIN (1962). Some Problems in Traffic Delay. Oper-
ations Research 10(1), pp. 74-104.

WIGAN, M. R. (1971). Benefit Assessment for Network Traffic Models and Application
to Road Pricing. Road Research Laboratory Report LR 417, Crowthorne, Berkshire,
England.

WILDE, D. J. (1964). Optimum Seeking Methods. Prentice-Hall, Englewood Cliffs, New
Jersey.

WILKIE, D. F., AND R. G. STEFANEK (1971). Precise Determination of Equilibrium in

388 References

References 389

Travel Forecasting Problems Using Numerical Optimization Techniques. HRB High-
way Research Record 369, pp. 239-252.

WILLIAMS, H. C. W. L. (1977). On the Formulation of Travel Demand Models and
Economic Evaluation Measures of User Benefit. Environment and Planning A 9(3),
pp. 285-344.

WILSON, A. G. (1967). A Statistical Theory of Spatial Distribution Models. Transpor-
tation Research 1(3), pp. 253-270.

WILSON, A. G. (1970). Entropy in Urban and Regional Modelling. Pion, London.
WISMER, D. A., AND R. CHATTERGY (1978). Introduction to Nonlinear Optimization: A

Problem Solving Approach. Elsevier/North-Holland, New York.
ZANGWILL, W. I. (1969). Nonlinear Programming: A Unified Approach. Prentice-Hall,

Englewood Cliffs, New Jersey.

Index

Accessibility measure (see Satisfaction
function)

Aggregate predictions, 270-71. 285
Aggregation integral, 271
All-or-nothing assignment, 73, 112

compared to stochastic network loading,
271-74

as part of SUE assignment, 333 36
in probit-based network loading, 300-2
in UE assignment, 118, 119

Alternatives analysis, 3
Asymmetric cost functions, 204, 214-15 (see

also Link interactions: with
asymmetric cost functions)

Attraction measures, 164 65
Augmented networks (see Network

representation solutions;
Supernetworks)

Basic network, 146-47
Basis, 190
Beckman's transformation, 59-69

equivalency to user equilibrium, 63 69
formulation, 59-60
uniqueness of solution, 66-69
with variable demand, 135 41

Bender's Decomposition, 161
Bisection method, 84-87

in UE assignment, 119

Bolzano search (see Bisection method)
BPR performance functions, 358
Braess' paradox, 75-78, 275

Calibration:
of demand functions (see Demand

functions: estimation of)
of link performance functions (see Link

performance functions: estimation of)
of O -D tables (see Origin-destination

matrix: estimation of)
Capacity:

of link performance functions, 17, 131
restrictions to improve flow, 77
of roadways, 350, 354, 359

Capacity restraint method, 112 14
and the convex combinations algorithm,

120
modified, 113-14

Centroid connectors, 14--16
Centroids, 14-16

notation, 57
Change of variable, 149
Choice functions, 263 64

for logit models, 265-66
for probit models, 267-69

Choice models (see Discrete choice models)
Choice probability functions (see Choice

functions)
Choleski factorization, 381

390

- -- -------

Index

Clark's approximation, 379-81
for network loading, 300, 303
for probit choice function calculations, 268
for probit satisfaction function calculation,

270
Complementary slackness, 43
Computational considerations (see also

Convergence pattern):
for distribution/assignment problems, 178,

180, 186-89
for link interactions problems, 220-27, 240
for the method of successive averages,

328-31
for probit-based SUE, 332-35
for shortest path problems, 125-27
for SUE programs, 329-31
for UE programs, 127-29
for variable demand programs, 151-53

Computer implementation, 125-29
Concavity, 39

of log likelihood functions, 365
of perceived travel time, 278-79, 313

Congestion (see also Link performance
functions):

effects on convergence to equilibrium,
121-22

as a function of flow, 16-18
interaction with travel decision, 1, 4-5,

9-10
Conservation of flow (see Constraints: flow

conservation)
Constrained minimization algorithms, 95-99
Constraint qualification, 43
Constraints:

flow conservation, 60
linear equality, 46-50
nonnegativity, 45-46, 49-50, 60
in standard form, 28-29

Consumers' surplus interpretation, 137
Convergence criteria:

for capacity restraint algorithms, 113-14
for curve fitting methods, 88
for diagonalization algorithms, 216, 220,

239, 245
for distribution/assignment problems, 174,

186
for estimation of O-D matrices, 372
for incremental assignment, 115
for interval reduction methods, 82
for the method of successive averages,

327-28
for multidimensional minimization, 92, 96
for probit-based network loading, 301-2
for stochastic network loading, 301-2

for SUE with link interactions, 336
for UE equivalent minimization

algorithms, 119
for variable demand UE problems, 145

Convergence pattern (see also Computational
considerations):

of the convex combinations method:
for distribution/assignment problems,

178, 186, 187
for quadratic problems, 104-7

of diagonalization and streamlined
diagonalization algorithms,
220-27

of the double stage algorithm:
for distribution/assignment problems,

180, 187-89
for variable demand problems, 180

of interval reduction methods (table), 87
of the method of successive averages,

328-31
Convex combinations method, 99, 107

application to the choice of O-D matrix
that reproduces observed conditions,
369

application to distribution/assignment
problems, 168-69, 174-78, 188-89

convergence pattern, 178
application to entropy distribution/

assignment problems, 185-87
application to modal split/assignment,

155-59, 236-38
application to UE traffic assignment,

116-22
application to UE with symmetric link

interactions, 209
compared to heuristic methods, 120-21

application to variable demand problems,
141-53

for convex problems, 99-107
as part of a diagonalization algorithm,

215-27
Convexity:

of feasible region, 44-45
in linear programming, 52
of objective functions, 32-33
of the satisfaction function, 269-70
and strict convexity, 30-32, 36, 38-40

Correlated alternatives, 295-96 (see also
Logit: deficiencies of)

Cost effectiveness considerations (in
algorithmic convergence), 88

in applying the convex combinations
method, 121

CPU time, 127

I _�___

391

Index

Critical gap, 355
Curve fitting (as a calibration technique),

362-66
Curve fitting methods (of optimization),

87-90
Cycle time (of traffic lights), 351
Cyclic path, 146

Data:
for estimating discrete choice models,

362-64
for estimating O-D matrices, 368-72
for estimating the parameter of stochastic

network loading, 367
for estimating regression lines, 360-62
for maximum likelihood estimation,

362-64
Davidson's curves, 359
Delay (see also Link performance functions):

at signalized intersections, 351-54
at unsignalized intersections, 354-58

Demand functions (see also Discrete choice
models):

in distribution/assignment problems,
171-78

in economic markets, 6-8
in equilibrium with supply functions, 6-9
estimation of, 360-67
for mode choice, 155, 234, 239, 339
in transportation system analysis, 10
in variable demand equilibrium

framework, 134-35
Demand nodes, 189-91
Density of traffic, 347-50

jam, 350
optimal, 350

Depth (of node in a list), 195
Descent direction vector, 90-91
Descent methods (of optimization), 88, 90-99
Descriptive analysis approach, 3, 24
Design period, 20
Diagonalization algorithm, 215-27

application to modal split/traffic
assignment, 239-42, 244-45

application to multi-choice supernetworks,
250-51, 252

application to SUE with link interactions,
336

streamlined, 220-27, 245, 251
Dial's algorithm, 288-94 (see also STOCH

algorithm)
Discrete choice models:

logit, 264-66
parameter estimation, 364-67

probit, 266-69, 379
review, 262-71
route choice applications, 272-80
in stochastic network loading, 287-308

Distribution/assignment joint problems, 165-
89, 197-98

comparison of singly and doubly con-
strained, 188-89

with destination demand functions, 171-78
doubly constrained models, 180-89
singly constrained, 165-79
with UE criterion between destinations,

165-70
Disutility (see Utility; Impedance:

generalized)
Ditonic functions, 30, 32-33, 54
Double pass algorithm (see STOCH

algorithm: double pass version)
Double stage algorithms:

application to distribution/assignment
problems, 179-80

application to doubly constrained models,
187-89

application to entropy distribution/
assignment problems, 187-89

application to mode split/assignment
problems, 237-38

application to variable demand programs,
200

for hypernetworks, 340
Doubly constrained models, 180-89 (see also

Distribution/assignment joint
problems)

Dual variables, 43
in distribution/assignment programs,

166-68, 173-74
in first order conditions for multivariable

minimization, 42-44
in first order conditions for one-variable

minimization, 35
in joint modal split/distribution/

assignment problems, 249-50
in joint trip generation/modal split/

distribution/assignment
problems, 252

as Lagrange multipliers:
in general programs 49, 51
with linear and quality constraints,

46-49
as shortest path travel times, 65-66
in the transportation algorithm, 193-94
in UE equivalent programs, 63-66
in variable demand programs, 137-41

Dummy links (see also Network

392

Index

representation solutions;
Supernetworks; Hypernetworks)

in solving distribution/assignment
problems, 169-70, 175-77

in solving joint travel decision problems,
234, 240-47, 339-40

in solving variable demand problems, 148
Dummy nodes (see also Network

representation solutions; Super-
networks; Hypernetworks)

in solving distribution/assignment
problems, 169-70, 175-77

in solving joint travel decision problems,
234, 240-47, 339-40

in solving variable demand problems, 148

Entropy models, 182-84
Environmental issues, 3
Equilibrium (see also Equilibrium equations;

User equilibrium; Stochastic user
equilibrium):

between destinations, 166, 170-71
in economic markets:

between performance and demand, 8-9
between supply and demand, 6-9

with link interactions, 206
in physical systems, 5

static vs. dynamic, 20
in the transportation arena, 9-10
between transportation modes, 154-55
over transportation networks, 18-23
in urban networks:

descriptive explanation, 4-6
equilibrium equations, 65-66

with variable demand, 135, 140-41
Equilibrium assignment (see Traffic

assignment)
Equilibrium definitions, 18-22

for distribution/assignment problems,
165-67

for joint choices problems, 247-53
for stochastic user equilibrium, 19-20
for user equilibrium, 19-22
with variable demand, 135, 140-41

Equilibrium equations:
stochastic user equilibrium, 304- 10
user equilibrium, 65-66

Equity issues, 3
Equivalence conditions (see First order

conditions; Beckman's
transformation)

Equivalent performance functions, 159
for distribution/assignment problems,

169-70, 175-78

for joint decision problems, 247-48, 252,
339-40

for modal split/assignment problems, 159
Equivalent programs, 56-57

for entropy distribution/assignment
problems, 183

for estimating O-D matrices, 368
for joint distribution/modal split/

assignment (subproblems), 249
for modal split/traffic assignment, 155-57
for modal split/traffic assignment with full

transit network, 235
for modal split/traffic assignment with

interdependent modes, 239
for stochastic user equilibrium, 312-16
for symmetric link interaction problems,

213
with two-way link interaction, 204-5
for UE assignment, 59-69 (see also

Beckman's transformation)
for UE distribution/assignment, 166
for variable demand UE assignment,

135-37
Equivalent transit links, 243
Equivalent travel time:

on hypernetwork links, 340
on supernetwork links, 159, 170, 175,

247-48, 252
Error term in discrete choice models:

definition, 263
for logit, 265
for probit, 266
uniformly distributed, 264

Estimation:
of demand functions (see Demand

functions: estimation of)
of O-D tables (see Origin-destination

matrix: estimation of)
Evans' algorithm (see Double stage

algorithms)
Excess demand formulation, 148-53
Expected perceived travel time, 278-80,

313-15, 324
Exponential decay function, 184

False position method, 89
Feasible direction methods, 95-99

finding a feasible descent direction, 97-99
maintaining feasibility in line search,

96-97
Feasible region, 28, 33-36, 40-45
FHWA equilibrium algorithm (see Capacity

restraint method: modified)

393

Index

Fibonacci search, 84
First order conditions:

for constrained minimization in many
variables, 40-44

for constrained minimization in one
variable, 33-36

for distribution/assignment UE
minimization, 166-68, 173-74,
183-84

of the equivalent minimization for
estimating O-D matrices, 369

for Hitchcock's transportation problem,
193

with Lagrangians:
for general programs, 49 51
for linear equality constraints, 46-49

for mode split/traffic assignment, 156-57,
235

for SUE equivalent minimization, 316-18
with two-way link interactions. 205-7
for UE equivalent minimization, 63-66
for unconstrained minimization in many

variables, 37-38
for unconstrained minimization in one

variable, 30
for variable-demand UE minimization,

137-41
Fixed step-size algorithms (see Successive

averages, method of)
Flow measurement, 347
Forward star form, 126
Four-step planning process, 231
Frank-Wolfe Algorithm (see Convex

combinations method)
Free-flow speed, 349
Fundamental diagram of traffic flow, 350
Fundamental relationships of traffic flow, 348

Gap acceptance, 354-55
Generalized impedance (see Impedance:

generalized)
Generating link, 146
Geometric probability mass function, 354
Global convergence theorem 90
Golden section method, 83-84
Goodness-of-fit measures, 376
Gradient:

definition, 37
numerical calculation of, 93

Gradient conditions (see First order
conditions)

Graphs (see Network components; Network
representation; Network notation)

Gravity models, 181-82, 188
Greenshield's density/speed line, 349-50
Gumbel distribution, 265

variance of, 287

Headway, 347
Hessian, 38 (see also Second order

conditions; Jacobian matrix:
of link travel times vector)

condition for convexity, 38-40
for problems with link interactions, 207-8,

211-14
and second order algorithms, 94-95
of SUE objective function, 318-22
of the system optimization objective

function, 72
of the UE equivalent minimization, 66-69

Heterogeneous populations (see Aggregate
predictions)

Heuristic equilibration methods, 111-16
Hitchcock's transportation problem, 165,

189-97
Hypernetworks, 339-40

I.I.D. property of logit models, 265, 284,
295-97

Impedance (see also Link performance
functions; Utility):

of dummy links (of hypernetworks), 339
generalized, 16, 154
and link performance functions, 16
marginal, 71
net travel impedance, 165
of transit links, 154-55
travel time measure of, 17-18

Incidence matrix, 58-59
Incidence relationships, 57-59

between perceived link and path times,
298-99

on transit networks, 233
Incremental assignment, 115-16
Independence of irrelevant alternatives (see

Logit: deficiencies of)
Indicator variable, 52
Infrastructure, transportation, 2
Inner iterations, 332
Input/output diagram, 351-52
Inputs for equilibrium analysis, 3, 346-76
Interactions between links (see Link

interactions)
Intersections:

delay, 351-58
network representation of, 11-13

�-a�--- --� --- I I ·- ·-- i-- --- -- s

394

Index

Interval reduction methods, 82-87
Iterations (see Computational

considerations)

Jacobian matrix:
of choice probabilities vector, 320
of link travel times vector, 212, 218, 228,

319-20, 335
Jam density, 350
Joint travel choices (see also Modal split/

traffic assignment,
Distribution/assignment
joint problems)

with hypernetworks, 339-40
with supernetworks, 231-59

Kuhn-Tucker conditions, 40-44 (see also First
order conditions)

Label (see Node label)
Label correcting algorithm (see Shortest path

over a network)
Lagrangian multipliers, 43 (see also Dual

variables)
Lagrangians:

for distribution/assignment programs,
166-68, 173

for the equivalent minimization for
estimating O-D matrices, 369

for general programs, 49-51
with linear equality constraints, 47-48
with nonnegativity and linear equality

constraints, 48-49
and partial dualization, 371
and saddle points, 49-51, 371
for system optimization programs, 71-72
for UE equivalent minimization, 63-66
for variable demand programs, 137-40

Land use, 2-3
Least squares, 360-62
Level of service in transportation, 3, 9-10
Likelihood function, 363

for discrete choice models, 365
Line integral, 213
Line search, 82 (see also Mathematical

programs: solution algorithms for:
one dimensional problems)

Linear model, 360-62
Linear programs, 51-52

in the direction finding step of the convex
combinations method, 101-2

Link cost (see Impedance: generalized)
Link interactions, 203-30

with asymmetric performance functions,
214-27

with SUE, 335-36
with symmetric performance functions,

212-14
in two-way traffic, 204-12

Link-path incidence (see Incidence
relationships; Network notation)

Link performance functions:
for approaches to signalized intersection,

351-54
for approaches to unsignalized

intersections, 354-58
based on traffic flow characteristics,

350-51
capacitated, 336
convexity of, 61
development of, 346-60
estimation of, 360
inverse of, 321-22
monotonicity of, 61
used in practice, 358-60

List processing issues:
in shortest path algorithms, 123-27
in the STOCH algorithm, 306
in transportation algorithms, 194-95

Local minimum (see Minimum: local)
Logit (see also Discrete choice models: logit;

Network loading models: logit-
based):

deficiencies of, 295-97
inverse of, 156-57
as a modal split function, 155, 234, 265-66
model calibration, 364-67
as a multinomial choice model, 264-66
as a network loading model, 286-97
as a trip distribution model, 172-73

Logit assignment (see STOCH algorithm)
Log-likelihood function, 363

for discrete choice models, 365
Log-sum measure (see Satisfaction function)
Lower bound:

for the convex combinations algorithm,
102-3

for interval reduction methods, 87

Market clearing, 6
Mathematical programs (see also Equivalent

programs)
components of, 28
constrained:

in many variables, 40-45
in one variable, 33-37

395

Index

Mathematical Programs (Cont.)
solution algorithms for:

constrained minimizations, 95-99
multidimensional problems, 90-99
one dimensional problems, 81-90
unconstrained minimizations, 92-95

standard form of, 28-29
unconstrained:

in many variables, 37-40
in one variable, 30-33

Maximum likelihood estimation, 362-64
for calibrating discrete choice models,

364-67
M/D/1 queue, 353
Mean flow, 281
M/G/1 queue, 356
Minimization algorithms (see Optimization

algorithms, review of)
Minimum:

global, 32-33
local, 30-33, 37

Minimum impedance path, 242 (see also
Impedance: generalized)

Minimum path (see Shortest path over a
network)

MLE (see Maximum likelihood estimation)
Modal split/traffic assignment:

with distribution, 246-51
with distribution and variable demand,

251-53
with full transit network, 232-38
with hypernetworks, 339-40
with implicit transit network, 153-67
with independent modes, 153-59
with interdependent modes, 238-42
with logit models, 155, 234
with non-UE transit assignment, 242-45
with probit models, 339

Modal split function, 155, 234, 265-66, 339
Mode choice models, 265-66

estimation of parameters, 365-67
Modified capacity restraint (see Capacity

restraint method: modified)
Modified network, 147 (see also Network

representation solutions;
Supernetworks)

Monte Carlo simulation:
for aggregation, 271
for calculating probit choice functions,

267-69, 381
for calculating probit satisfaction

functions, 270
for logit assignment, 308
for probit-based network loading, 297-302

for solving SUE programs, 323-24, 327
Moore's algorithm (see Shortest path over a

network)
Move size, 90
Multinomial distribution of flow variables,

281-82
Multinomial logit, 264-66 (see also Discrete

choice models: logit)
Multinomial probit, 266-69, 379 (see also

Discrete choice models: probit)
Multistage algorithms, 281 (see also Double

stage algorithms)
Multivariate normal distribution, 266-68,

377-78
of path travel times, 298-300

MSA (see Successive averages, method of)

Nature of flow variables, 280-82
Necessary conditions (see First order

conditions)
Negative exponential distribution, 362-63
Network components:

links (arcs), 10-11
nodes (vertices), 10-11
paths (routes), 11

Network loading, 111-12
comparison of probit and logit algorithms,

302-5
deterministic (see All-or-nothing

assignment)
logit-based, 288-94 (see also STOCH

algorithm)
probit-based, 297-302
stochastic, 271-82

Network notation, 57-59
for transit networks, 232-33

Network representation, 10-18
of centroids and connectors, 14-16
by directed networks and graphs, 11
of roadway intersections, 11-12
of transit networks, 13-14
of urban roads, 11-13

Network representation solutions (see also
Modified network; Supernetworks):

of distribution/assignment with logit
functions, 174--78

of UE distribution/assignment problems,
169-70

of variable demand problems, 146-53
the excess demand formulation, 148-51
the zero cost overflow formulation,

146-48
Newton-Raphson, 161

___ _I_ I�__ · __I_ _I __ I__�____

396

Index

Newton's method:
for multidimensional search, 94-95
for one-dimensional search, 88-89

Node label, 123
Normal distribution (see also Multivariate

normal distribution):
of link travel times, 298-300, 313
in probit assignment, 303-5
standard curve, 267, 378

Normative analysis approach, 3 (see also
System optimization)

Numerical considerations (see Compu-
tational considerations)

Numerical integration method, 268

Objective function, 28-29
Optimization (see Mathematical programs)
Optimization algorithms, review of, 81-110

multivariate minimization, 90-99
constrained problems, 95-99
unconstrained problems, 92-95

one-dimensional minimization, 81-90
Origin-destination matrix:

as analysis input, 19
estimation of, 367-72
notation, 57-59

Outer iterations, 332
Outputs of equilibrium analysis, 3-4
Overlapping routes, 294-97

Paradox:
Braess', 75-78, 275
in stochastic network loading, 275-78, 285

Partial dualization, 371
Penalty method (for initializing

transportation problems), 191
Performance functions (see also Link

performance functions)
descriptive analysis in general markets,

7-9
equilibrium with demand, 9
interaction with supply and demand, 9

Pivot node, 195
Pointer variables, 126-27
Poisson process, 353, 354-56, 362
Positive definite matrices, 38-40 (see also

Second order conditions)
Predecessor:

list, 123, 195
node, 123, 195

Price, economic, 6-9 (see also Supply
function)

Probit (see also Discrete choice models:
probit; Network loading:
probit-based):

as a basis for SUE, 297-302
with link interactions, 335-36
numerical considerations for, 332-35

as a mode choice model, 339
as a multinomial choice model, 266-69

Quadratic fit methbd, 89
Quasi-Newton optimization methods, 95
Queueing models:

M/D/I, 353
M/G/1, 356

Ramp metering, 77
Random flow variables, 281-82
Random utility models (see Discrete choice

models)
Reduced costs, 193
Reduced gradient method, 161
Reduction ratio:

for bisection method, 85
for the golden section method, 84
for interval reduction methods, 82

Regression, 360-62
Regularity conditions, 29, 81

for discrete choice models, 270
Relaxation algorithm (see Diagonalization

algorithm)
Root node, 122-24, 195
Route choice models, 272-82

deterministic (see All-or-nothing
assignment)

logit-based, 286-97, 329, 337, 342-44
probit-based, 297-302

Route choice probability (see Route choice)

Saddle point (see Lagrangians: and saddle
points)

Sample (see also Data):
in model estimation problems, 362-63
in probit-based network loading, 301

Satisfaction function, 269-70
as expected perceived travel time, 278-80
for logit models, 270

Scenarios, analysis of, 2-3, 24
Second order conditions:

for constrained minimization in many
variables, 44-45

for constrained minimization in one
variable, 36

for logit log-likelihood functions, 365
for SUE equivalent minimizations, 318-22

_ · _.___

397

Index

Second order conditions (Cont.)
for UE distribution/assignment programs,

168
for UE equivalent programs, 66-69
for UE with link interactions, 207-8,

212-14, 227-28
for unconstrained minimization in many

variables, 38-40
for unconstrained minimization in one

variable, 30-33
for variable-demand UE programs, 141

Second-order minimization algorithms,
94-95

Sensitivity analysis, 43, 53
Sequence list, 123-27
Shadow prices, 43, 53 (see also Dual

variables)
Share models, 172
Shortest path over a network:

algorithm, 122-24
computer implementation, 125-28

Shortest-path tree, 123
Signalized intersections, 351-54
Simulation (see Monte Carlo simulation)
Single-pass algorithm, 294
Spacing, 347
Spanning tree, 195
Speed of traffic, 347-51

space mean speed, 347, 349
time mean speed, 348-49

Standard deviation of link flow, 301
State of system (see Entropy models)
Stationary points, 30, 37 (see also First order

conditions)
in UE equivalency conditions, 63-64

Steepest descent algorithm, 92-94
for minimizing the SUE objective, 323

Step size (see Move size)
Stirling's approximation, 183
STOCH algorithm, 288-94

double pass version, 288-92
single pass version, 292-94

Stochastic network loading, 271-82, 286-308
(see also Network loading)

parameter estimation for, 366-67
Stochastic network loading paradox,

275-80
Stochastic user equilibrium:

compared to user equilibrium, 336-39
computational issues in solving for, 332-35
conditions, 309-10
definition, 310
equivalent minimization, 312-22
as a generalization of UE, 309-12

with link interactions, 335-36
solution algorithm for, 322-28

Stopping rules (see Convergence criteria)
Streamlined diagonalization algorithm,

220-27 (see also Diagonalization
algorithm: streamlined)

Successive approximation method, 268 (see
also Clark's approximation)

Successive averages, method of, 324-36, 340
SUE (see Stochastic user equilibrium)
Sufficient conditions (see Second order

conditions)
Supernetworks, 231-59

analysis of, 253-55
for distribution/modal split/traffic

assignment, 248-51
for generation/distribution/modal split/

traffic assignment, 252-53
for modal split/traffic assignment, 234-43

Supply function:
in economic markets, 6-7
in equilibrium with demand, 6-9
in transportation, 9-10

Supply nodes, 189-91
Symmetric interactions (see Link

interactions: with symmetric
performance functions)

System optimization, 69-77
first order conditions for, 70-72
formulation of, 69
second order conditions for, 72

System performance measures, 70
Systems approach to urban transportation,

4-6
in transportation networks context, 18, 24

Target matrix, 370-72
Three points method of curve fitting (see

Quadratic fit method)
Time-space diagram, 347
Traffic assignment:

formulation as a minimization program,
59-60

methodology selection, 336-39
problem definition, 19, 58

Traffic flow models, 347-50
Trajectories of vehicle movements, 348
Transit assignment:

non UE-based, 242-46
UE-based, 232-42
Volvo's model, 242-43

Transit networks:
notation, 232-33

398

Index

as part of joint mode split/traffic
assignment, 232-38

representation, 13-14
Transportation problem (see Hitchcock's

transportation problem)
Travel time:

marginal, 137
perceived, 272-74, 279-80, 287, 310-12
total, 280

as a system performance measure, 70
Tree (of a network), 123
Trip distribution model:

entropy-based, 182-84
gravity formulation, 181
logit-based, 172

Trip distribution/traffic assignment joint
models, 164-89

Trip generation, 252-53
Trip production constraint, 164, 166
Two-way traffic interactions, 204-9

UE (see User equilibrium; Wardrop's rule;
Traffic assignment)

UMTA Transportation Planning System
(UTPS), 130

Unconstrained programs, 30-33, 37-40, 313
Unimodal functions, 30 (see also Ditonic

functions)
Uniqueness conditions (see Second order

conditions)
Uniqueness of solution to equivalent

programs, 57
Upper bound on demand function, 135, 142,

151
UROAD, 130
User equilibrium:

in distribution assignment problems,
165-68, 171-74, 180-84

with fixed demand, 59-69 (see also
Beckman's transformation)

with joint models, 249, 251-52
as a limiting case of SUE, 310-12-
with link interactions, 206, 216-20
with modal split, 151-63, 232-45
and system optimization, 72-78
with variable demand, 134-51

Utility, 262-68
in choice situations, 262-63
measured (systematic), 263
of paths in a network, 273-87
perceived, 263

Utility maximization, 262-64
as perceived travel time minimization,

272-74, 278-80
Utilization ratio, 352

effective utilization ratio, 353

Validation studies, 130
Variable demand equilibrium problems,

134-63
geometric interpretation, 136-38,

Variable metric algorithms, 95
Variance of travel time perception, 272-74,

279-80, 287, 310-12
Variance-reduction methods (in simulation),

308
Virtual links (see Dummy links)
Virtual nodes (see Dummy nodes)
Volume/capacity ratio, 359
Volume-delay curves (see Performance

functions)

Wardrop's rule, 22 (see also User equilibrium;
System optimization)

Webster's formula, 353-54
Welfare measures, 3

Zero-cost overflow formulation, 146-48

_ _. __ ___

399

