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ABSTRACT

Are jobs diffuse bundles of activities, or are they concentrated on a small core?
This paper develops a statistical framework to measure the intensive margin of work
using task-frequency survey responses from O*NET. Using categorical occurrence
data for 12,495 tasks in O*NET 29.0, we construct within-occupation estimators of
task flows and task shares that sum to one. Under a within-occupation homogeneous
task-duration assumption, these shares can be interpreted as time allocations across
tasks. We propagate sampling uncertainty from the underlying survey responses to
obtain fully specified estimators of task flows and task shares, and provide diagnostic
evidence on the robustness of the resulting measures. The framework yields inter-
pretable, budget-share-like task weights that aggregate transparently into standard
economic outcomes, including exposure indices, and workforce or wage-bill decom-
positions.

Empirically, we document a pronounced core-periphery structure of work: on
average, the top three tasks account for about 31% of implied labor input across
occupations. Linking task shares to U.S. microdata, we show that a small fraction
of tasks accounts for a disproportionate share of both employment and wage bill.
We then quantify how AI exposure aggregates depend on the accounting margin:
tasks exposed to LLM-powered software account for about 52% of the wage bill
but only 42% of employment. As external validation, we show that moments con-
structed from task-share weights yield economically interpretable wage gradients:
occupational specialization predicts higher wages. Conditional on work content, this
association attenuates with routine intensity. Standard intensive-margin proxies re-
produce neither the specialization gradient nor its attenuation.

Pierre Bouquet ( pierre.bouquet.ch@gmail.com)



1. Introduction

AI reshapes work by altering the productivity of particular tasks, not by directly
shocking occupations. Yet the empirical literature typically measures AI or automation
exposure at the occupational level, often treating tasks as binary attributes or relying
on coarse occupational averages of task exposure. This conflates jobs that perform
the same exposed tasks but devote very different shares of work to them. This results
from the intensive margin of work, or how labor input is allocated across tasks within
occupations, being weakly measured. As a result, exposure metrics are often difficult
to interpret economically.

This paper’s core contribution is an interpretable intensive-margin measurement
object: an occupational task share constructed from observed task frequency. Rather
than producing a unitless intensity score, we recover, for each occupation i and task
k, a share π̂i,k satisfying

∑
k π̂i,k = 1. We interpret π̂i,k as a proxy implied by observed

task occurrences of the share of labor input allocated to task k within occupation i.
Under a homogeneous within-occupation task-duration assumption, π̂i,k coincides with
the task time share. Because π̂i,k behaves like a budget share, it maps directly into
standard economic aggregates. In particular, any task-level index or exposure score ak
can be aggregated into an occupation-level intensive-margin index Ai =

∑
k π̂i,k · ak.

The proposed measurement framework covers more than 11,500 O*NET tasks.
O*NET surveys use a skip pattern: they first ask a worker whether they perform
a task and, conditional on being performed, measure annual frequency on an ordi-
nal scale. We leverage this structure to construct three linked measurement objects.
First, we recover the unconditional distribution of task-frequency categories for each
occupation–task pair. Second, we map ordinal frequency categories into annualized
counts using a transparent calibration, producing an annualized task “labor flow”
measure. Third, we normalize these flows within occupations to obtain proxies of
task shares of labor input π̂i,k, which can be merged with employment, earnings, and
automation-exposure scores to produce economically interpretable aggregates.

The paper also provides a disciplined uncertainty framework to enable inference
on aggregation and nonlinear functionals (e.g. concentration measures or exposure
indices). We propagate survey uncertainty to report point estimates and estimated
variances for each measurement object through a covariance completion step. The
completion is statistically parsimonious, selecting a minimum-complexity covariance
matrix consistent with observed marginal variances. By construction, it avoids im-
posing spurious correlations not warranted by the available information. Additionally,
the completion criterion is strictly convex, and thus the recovered measurements are
uniquely defined, ensuring full reproducibility. Finally, we assess conceptual sensitivity
to alternative frequency calibrations and to plausible heterogeneity in task duration.

To connect our measurement layer to canonical constructs, we classify tasks under
the routine-task taxonomy of Autor, Levy, and Murnane (2003) using the LLM-based
protocol of Autor and Thompson (2025). Aggregating these task labels to the occu-
pation level using our labor input proxies, we benchmark the resulting occupation
scores against existing indices drawn from Acemoglu and Restrepo (2022). We also
show how intensive-margin aggregation changes the composition of measured expo-
sure across task types when tasks are weighted by employment, or labor costs.

The fourth part of the paper presents three stylized facts that illustrate why
intensive-margin measurements matter for labor, automation and AI exposure mod-
eling. First, occupations exhibit a pronounced core-periphery structure: the median
occupation performs 19 tasks, yet the top three tasks account for about 31% of labor
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input. Second, this concentration persists when weighting by employment: while the
average task count rises (from 29 to 36), the top-three’s share remains near 30%, im-
plying that labor input concentrates in a small set of tasks. Third, intensive-margin
weighting changes the composition and incidence of AI exposure across routine and
non-routine work. Tasks directly exposed to conversational LLMs represent a relatively
small share of aggregate activity (about 15% of labor input and cost) and are con-
centrated in routine cognitive tasks. In contrast, exposure through LLM-augmented
software accounts for about 40% of the labor input and 51% of the total labor cost and
is composed primarily of non-routine and interpersonal cognitive tasks. Finally, “not-
exposed” work is disproportionately manual and non-routine interpersonal (about 45%
of labor input but 34% of the total labor cost).

The final part of the paper provides measurement validation using wages as an exter-
nal criterion. We document that task-share-based metrics of task allocation are system-
atically related to earnings: specialization (task-share concentration) is positively as-
sociated with wages (about 6% per standard deviation), routine intensity is negatively
associated with wages (about 10% per standard deviation), and the specialization-wage
gradient is larger in low-routine occupations and attenuates with routine intensity. We
further show that commonly used alternative task weighting schemes do not reproduce
these specialization patterns, indicating that existing intensive-margin proxies are not
interchangeable with task-share weights.

Our work contributes to several strands of economic literature. Canonical models of
Autor, Levy, and Murnane (2003); Acemoglu and Autor (2011) conceptualize occupa-
tions as bundles of tasks but largely operate on the extensive margin, whether a task
is performed, without a principled way to weight tasks by intensity or labor input. A
growing literature aggregates task information into occupation-level indices using dif-
ferent weighting schemes: uniform averages of task scores (Autor and Thompson 2025),
weights based on O*NET task attributes that are informative about intensity (Webb
2019), and frequency-based proxies that incorporate task intensity (Martin and Mon-
ahan 2022; Tomlinson et al. 2025; Bouquet, Bagnoli, and Sheffi 2025). We contribute
to this literature by providing an economically interpretable measurement object for
the intensive margin. It aggregates directly into standard exposure and productivity
statistics. As it is a set of explicit statistical estimators, it allows other researchers to
construct exposure indices, concentration measures, and other derived statistics with
uncertainty quantification, rather than relying on simple or coarse weighting schemes.

This measurement motivation is reinforced by the literature on AI and automation
exposure, including Brynjolfsson and Mitchell (2017); Webb (2019) and Eloundou et al.
(2023), who construct task-based exposure metrics under diverse aggregation schemes.
Notably, Eloundou et al. (2023) highlights the intensive-margin measurement problem,
reporting that exposure estimates can be sensitive to the choice of task weights and
difficult to interpret economically. They ultimately adopt uniform or simple 2:1 ratio
weights (based on core versus supplemental task classifications) and report exposure as
the share of tasks exposed to large language models. Our empirical results document
substantial dispersion in within-occupation task intensity and show that accounting for
this heterogeneity yields AI exposure measures that are interpretable in economically
meaningful units.

The rest of the paper is organized as follows. Section 2 introduces the framework
and derives the key equations. Section 3 presents the data and robustness tests. Section
4 presents evidence on task concentration, task-type patterns in LLM exposure when
aggregated by labor input and labor cost. Section 5 provides measurement validation
using wages as an external criterion and benchmarks task share based moments against
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existing intensive-margin metrics. Section 6 concludes.
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2. Measurement Framework

This section develops a conceptual framework for estimating a proxy of the distribution
of labor inputs across tasks within an occupation. Our measurement challenge is to
transform ordinal, qualitative responses from job incumbents’ surveys into cardinal
estimates of task flow and labor input shares.

2.1. Recovering the Latent Distribution of Task Frequency

To characterize the intensive margin, we must first confront the specific structure of
the O*NET survey instrument. The data-generating process follows a two-stage skip
pattern designed to reduce respondent fatigue. For each task item, incumbents are first
asked whether it is part of their job (the extensive margin). If a respondent answers
negatively (i.e. that they do not perform the task), the task is explicitly recorded as
“not relevant,” and the inquiry ends for that item. Only respondents who pass this
first stage are asked to report the frequency of execution of the task on a seven-point
ordinal scale.

Hence, we introduce the mass point at zero (r = 0) to capture these “never perform”
answers and construct the unconditional probability vector, p̂i,k,r, the probability that
a worker in occupation i selects frequency category r for task k, by scaling the condi-
tional frequency distribution with the probability of a task occurring:

p̂i,k,r =

1− R̂i,k if r = 0 (Extensive Margin: Never),

R̂i,k · F̂i,k,r if r ∈ {1, . . . , 7} (Intensive Margin: Frequency),
(1)

where R̂i,k denotes the proportion of incumbents in occupation i reporting task k

as relevant, and F̂i,k,r is the conditional probability of selecting frequency category

r. This transformation yields a complete probability mass function,
∑7

r=0 p̂i,k,r = 1,
characterizing the latent distribution of task frequency across the entire population of
incumbents.

For r ≥ 1, p̂i,k,r is constructed from two estimated objects, which O*NET reports

with distinct sample sizes and standard errors. We treat the sampling errors in R̂i,k

and F̂i,k,r as approximately uncorrelated and propagate sampling uncertainty using
Goodman’s product-variance approximation (Goodman 1960) for tractability. This
approximation is necessary because the released aggregates do not identify the sam-
pling covariance between the two estimators. This yields a fully specified estimator of
the latent task-frequency distribution. The full derivation is provided in Appendix A.2.

2.2. Annual Task Flows

Economic measurement requires task inputs to be expressed on a cardinal scale. Be-
cause O*NET reports task frequency in ordered categories, we translate each category
into an expected number of occurrences per worker-year. Following Martin and Mona-
han (2022); Tomlinson et al. (2025), we define an annualization vector w that assigns
point estimates to each frequency category, from “Never” to “Hourly or more”:
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w =
[
0, 1, 4, 24, 104, 260, 780, 2080

]⊤
. (2)

This calibration anchors the survey categories to physical time constraints. For in-
stance, “Hourly or more” is mapped to continuous labor input that saturates a full
work year (2,080 hours), whereas “Daily” is mapped to one execution per workday
(260 occurrences). This conversion inevitably discretizes an underlying continuous la-
tent intensity; however, because the frequency scale spans three orders of magnitude
and incumbent responses exhibit substantial dispersion, the resulting intensity mea-
sures are driven primarily by structural heterogeneity in the ordinal data rather than
the specific local calibration of the weights. Robustness checks supporting this claim
are reported in Section 3.3.1.

The expected annual flow (number of occurrences per year) for task k in occupa-
tion i, denoted µ̂i,k ∈ [0, 2080]. It is the expectation of vector w with respect to the
unconditional probability distribution derived in Equation (1):

µ̂i,k = w⊤p̂i,k =

7∑
r=0

wr p̂i,k,r. (3)

The estimator µ̂i,k captures the expected annual flow of task k within occupation i. By
converting probabilities into flows, we establish a bridge to decompose the indivisible
occupational “job bundle” into divisible units of labor input.

Estimating the precision of µ̂i,k presents a challenge: the elements of p̂i,k are struc-
turally dependent (summing to unity), but the survey design only identifies their
marginal variances. To recover a valid covariance structure, we adopt a geometric
approach. We estimate the latent covariance matrix Σ̂i,k by solving a semidefinite
program that matches the observed marginal variances while minimizing the squared
Frobenius norm (Aitchison 1982).

Economically, this objective function acts as a parsimonious selection mechanism.
Among all covariance matrices consistent with the observed marginal variances and
the unit-sum constraint, minimizing the squared Frobenius norm recovers the latent
covariance structure that imposes the minimum necessary dependence between cate-
gories. Because the optimization is strictly convex over the feasible set, the solution
is unique. This yields a fully specified estimator of annual task flows, enabling valid
statistical inference. Full details of the optimization problem are provided in Appendix
A.3.

2.3. Task Share of Labor Input

We construct a normalized measure of task flow, π̂i,k, defined as a proxy for the fraction
of total labor input in occupation i allocated to task k. In theory, the intensive margin
of labor input is a function of two primitives: the frequency of execution and the
duration of each occurrence. Let µi,k denote the expected annual occurrences of task
k, and di,k denote the average duration (in hours) per occurrence. The true task time
share is given by:
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πi,k =
µi,k · di,k

Mi
, Mi =

∑
j∈Ki

µi,j · di,j . (4)

Where Mi is the total annual number of hours allocated across tasks in occupation i,
and Ki denotes the set of tasks in occupation i.

Ideally, identification would rely on simultaneous observation of both µi,k and di,k.
However, while the O*NET protocol yields granular data on frequency, it contains no
information on task duration. To operationalize Equation (4), we adopt a parsimonious
approximation by setting di,k = 1 for all k (Martin and Monahan 2022). Under this
homogeneity assumption, variation in task shares is identified exclusively through the
frequency margin:

π̂i,k =
µ̂i,k∑

j∈Ki
µ̂i,j

. (5)

We interpret π̂i,k as a frequency-based proxy of the labor input allocation to task k in
occupation i. While this abstraction may under-weight low-frequency, high-duration
“deep work,” it leverages the substantial cross-task dispersion in frequencies (spanning
three orders of magnitude in the annualization vector w) as the primary empirical
signal of task intensity. We assess the sensitivity of this approximation to duration
heterogeneity by conducting robustness checks under alternative duration profiles in
Section 3.3.2.

Finally, we treat π̂i,k as an estimated object rather than a deterministic occu-
pational characteristic. Treating µ̂i,k, as an asymptotically linear estimator, we
propagate measurement uncertainty to π̂i,k via the delta method (van der Vaart
2000). This explicitly accounts for the ratio structure in Equation (5), in which
the task-specific flow µ̂i,k enters both the numerator and the denominator. The
result is a fully specified estimator of task composition defined by a point estimate
and an associated asymptotic variance. Full derivations are provided in Appendix A.4.

For each occupation i and task k, we obtain point estimates and variances for
(i) annualized task flow and (ii) within-occupation task shares (labor-input share
proxies). Appendix A.5 summarizes modeling assumptions and choices. Appendix A.6
provides an illustrative table of estimated task flows and implied labor shares for an
occupation.
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3. Data and Measurement Robustness

In this section, we describe our data sources and report robustness checks of the
measurement method.

3.1. Main Data Sources

Worker Data. To characterize labor supply and wages, we use microdata from the
American Community Survey (ACS) of 2024, provided by IPUMS USA (Ruggles et al.
2025). The ACS is an ongoing national survey conducted by the U.S. Census Bureau
which samples approximately 3.5 million households annually. We restrict our sample
to the working-age civilian population (ages 16–64). We exclude military personnel
and unpaid family workers, and further limit the sample to employed workers with
reported positive hours and non-zero annual wages. We derive FTE measures and
provide the calculations and descriptive statistics in Appendix B.1.

Task Data. We leverage the major release of the O*NET database in 2024 (version
29.0) for this study. O*NET is maintained by the U.S. Department of Labor’s Employ-
ment and Training Administration and is one of the primary sources of standardized
occupational information in the United States, (National Center for O*NET Develop-
ment 2025). The database organizes occupational information hierarchically: approxi-
mately 55,000 job titles are consolidated into around 900 detailed occupational profiles,
which are further decomposed into approximately 18,000 unique task statements de-
scribing specific work activities. O*NET collects frequency and relevance ratings for a
subset of about 12,500 tasks. Descriptive statistics are provided in Appendix B.2.

LLM Task Classification. We classify each O*NET task statement into six mu-
tually exclusive categories, distinguishing between routine and non-routine tasks and
further sub-classifying them as manual, cognitive, or interpersonal using a large lan-
guage model (LLM) as a synthetic task coder. Our taxonomy follows the canonical
routine/non-routine framework in Autor, Levy, and Murnane (2003); Acemoglu and
Autor (2011). The LLM is applied directly to task text to produce task-level labels
using a minimally adapted prompt based on Autor and Thompson (2025). We then ag-
gregate these labels to the occupation level using task shares πi,k, yielding class-specific
task-share measures that sum to one within each occupation.

We validate the LLM-based classifications by comparing the resulting occupation-
level class labor input shares to occupation-level work content measures drawn from
Acemoglu and Restrepo (2022). Agreement is high: across the matched set of occupa-
tions, the average employment-weighted Pearson correlation between our LLM-based
measures and the benchmark is RW = 0.61 (unweighted RU = 0.56). The stronger
employment-weighted correlations indicate that alignment is greatest in economically
central (high-employment) occupations.

Figure 1 reports the class-by-class alignment with the benchmark (weighted R, rank
correlation, and the share of zeros), while Appendix C provides the full prompt, model
specification, robustness checks, and detailed discussions.
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Figure 1. Comparison of labor input weighted LLM task classifications with
occupation-level work content drawn from Acemoglu and Restrepo (2022) (N = 216).
Notes: Each panel corresponds to an occupation feature class. Each dot represents
an occupation in the Autor and Dorn (2013) taxonomy; marker sizes are adjusted to
their employment share. The horizontal axis reports the work content measure, while
the vertical axis reports the corresponding task-share–weighted LLM classification.
The dashed line shows the weighted least-squares (WLS) fit. Each panel reports the
weighted R2 from the WLS, the unweighted Spearman rank correlation, and the share
of occupations with zero labor-input in the work content class.

3.2. Numerical and Mathematical Robustness of the Estimation
Procedure

Based on the estimators of 12,495 tasks with enough incumbent responses for statistical
significance, we perform a series of mathematical diagnostic tests to ensure the stability
and validity of the estimated covariance matrices.

First, we verify that all estimated matrices represent mathematically valid covari-
ance structures that satisfy the probability constraints (i.e. that task probabilities sum
to one), the mean residuals achieve near machine precision (≈ 4×10−11). This confirms
the estimators are valid statistical estimators. Analyzing the covariance structures re-
veals an average effective rank of 3.7 (1.02). This indicates that, while the O*NET
instrument provides eight frequency categories, the latent uncertainty in incumbent re-
sponses is concentrated within a three- to four-dimensional subspace on average. This
supports that survey responses are internally consistent, and their answers restrict to
a few of the frequency categories.

Second, we test for extreme solutions. For each task, we compare the estimated
variance to its theoretical maximum and minimum possible values given the observed
marginals. We identify 670 tasks (5.36%) in which the estimates lie at the extreme
boundaries of the feasible set (normalized scores below 0.05 or above 0.95), suggesting
degenerate distributions that may be driven by sparse data.
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Third, we evaluate robustness to measurement error. We perturb the input marginal
variances by ±5% and re-estimate the covariance matrices. We find that the estimator
is very stable to measurement errors and only 48 tasks (0.4%) exhibit statistically
significant variance instability under these perturbations.

Fourth, we impose a minimum complexity constraint by excluding occupations with
fewer than three valid tasks. This threshold is necessary to filter out occupations for
which task information is not sufficiently available. This results in the removal of 2
occupations and 4 tasks (0.03%).

In summary, these quality control procedures result in the exclusion of 720 unique
tasks (5.8%). This process removes numerically unstable estimates and sparse job
profiles, leaving a robust analytical sample of 11,775 tasks covering 661 occupations.
Detailed diagnostic formulas, results, and discussions are provided in Appendix D.2.

3.3. Assumption Robustness and Economic Interpretation

3.3.1. Sensitivity to Annualization Weights

The validity of our intensive margin measure depends, in part, on the specification
of vector w, which maps ordinal frequency categories to cardinal task shares. To
ensure the estimated magnitudes of labor input allocation are not artifacts of our
baseline calibration, we test the sensitivity of π̂i,k against two alternative weighting
regimes: an “Aggressive vector” (wagg) assuming a continuous 365-day workflow, and
a “Compressed vector” (wcomp). The compressed specification is not a simple linear
rescaling; it applies a distinct weighting scheme that fundamentally alters the relative
importance of tasks by reducing the ratio between the highest and lowest frequency
weights from 2080:1 to 100:1. This allows us to verify if our results are robust to a
framework where high-frequency tasks are penalized less heavily relative to episodic,
low-frequency activities. Detailed weighting schemes for each specification are provided
in Appendix D.3.

We re-estimate the covariance completion model for all occupation-task pairs under
these specifications, using the intersection of tasks that converged to valid covariance
matrices across all three models (N = 9, 821). Results are presented in Figure 2.
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Figure 2. Robustness of Standardized Task Intensities (N = 9, 821) to Weighting
Specifications.

The task shares across specifications exhibit very high ordinal correlation, evidenced
by Spearman coefficients (ρ ≥ 0.9). This supports that the relative hierarchy of tasks
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within the occupational portfolio remains stable regardless of the frequency vector’s
specific calibration.

The cardinal consistency is very high between standard and compressed weights
(R2 = 0.966), it moderates when introducing the aggressive specification (R2 = 0.670).
As shown in Figure 2 Panels B and C, the aggressive vector tends to inflate shares
for middle-frequency tasks relative to the baseline. We interpret this divergence as
a mechanical consequence of the non-linear weights assigned to monthly and weekly
categories in wagg, which test the upper bounds of task flow.

3.3.2. Robustness to Duration Heterogeneity

A key challenge in measuring the intensive margin of work is the potential negative
correlation between task frequency and duration. In particular, tasks performed less
frequently may require more labor time per occurrence than highly repetitive, activi-
ties. Our baseline model assumes homogeneous task durations (di,k = 1), but standard
economic reasoning implies that non-routine tasks, which require situational judgment
and complex problem-solving, are likely to take longer per occurrence than routine
tasks (Acemoglu and Autor 2011). If such heterogeneity were severe, a frequency-
based estimator could mismeasure the true allocation of time shares.

To investigate the potential bias from unobserved duration heterogeneity, we con-
duct a “content-weighted” robustness exercise. We assign a duration multiplier dk = λ
for all non-routine tasks as defined in Acemoglu and Autor (2011) and captured by
our LLM classification, while routine tasks retain dk = 1.
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Figure 3. Robustness of Task Shares to Duration Assumptions. Panel A compares
the baseline task intensity (λ = 1) against a duration-weighted specification in which
non-routine tasks are assigned double weight (λ = 2). Panel B plots the coefficient
of determination (R2) between the baseline and duration-weighted measures as the
multiplier λ increases.

We begin by testing a specification with λ = 2, meaning that each non-routine oc-
currence is counted as twice the labor input of a routine task. Despite this adjustment,
Figure 3 (Panel A) shows that the baseline frequency measure accounts for the major-
ity of the variation in duration-weighted factor shares (R2 = 0.86). Visually, the point
distribution in Panel A reveals a mechanical reallocation: non-routine tasks shift above
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the 45◦ line as their individual weights increase, while routine tasks cluster below the
line. This downward shift for routine tasks reflects a mechanical effect: as non-routine
activities consume a larger portion of the occupational labor volume (Mi), the relative
share of routine tasks decreases mechanically to maintain the unit-sum constraint.

Panel B extends this analysis by varying λ. For plausible duration multipliers
(λ ∈ [1, 3]), the measure remains robust (R2 > 0.71). Even under the conservative
assumption that non-routine tasks require five times the duration of routine tasks
(λ = 5), frequency alone still explains nearly two-thirds of the cross-sectional varia-
tion in task shares (R2 = 0.56).

This analysis supports the conclusion that while some duration heterogeneity exists,
the primary driver of task shares is the heterogeneity in survey answers and task
frequency. This result is numerically coherent: while it is unlikely for task durations to
exceed a 1:10 ratio, the annual frequency weights in our model range from 1 to 2,080,
making frequency the dominant signal. This evidence suggests that our continuous
estimator delivers a strong and robust measure of task-level labor input.
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4. The Intensive Margin of Work: Characteristics and Facts

In this section, we investigate the intensive structure of work characteristics and their
translation into the U.S. economy. The covariance completion procedure produced
N = 11,775 task share estimates π̂i,k for 661 O*NET-SOC occupations. We map
O*NET-SOC occupations into 2010 Census occupation codes to harmonize O*NET
with IPUMS data. To preserve our statistical methodology, we normalize task shares
within each Census occupation so that they sum to one. The crosswalk and aggregation
procedure are described in Appendix E.1. This generates 290 Census occupations
represented as 8,491 tasks.

Using this data, we document three facts about the intensive margin of work. First,
task shares within occupations exhibit a pronounced core-periphery structure. Sec-
ond, weighting by FTEs and wages shows that this concentration remains significant.
Third, mapping tasks into LLM exposure categories reveals sharp differences between
exposure measured in labor input versus total labor cost.

4.1. Stylized Fact 1: Occupations have a “core-periphery” structure

A central stylized fact emerging from our analysis is that occupations are not dif-
fuse bundles of evenly weighted activities. Instead, the within-occupation allocation
of task shares exhibit a “core-periphery” structure: a small set of tasks accounts for a
disproportionate share of total labor input.

Using representative occupations constructed from task shares, we find that occu-
pations comprise, on average, 29 distinct tasks, with a median of 19. This dispersion
may be mechanically amplified by the many-to-one mapping from detailed SOC codes
to Census occupations, which expands the observed task set at the Census-occupation
level. Nevertheless, the cross-occupation distribution of task counts remains wide: the
interquartile range spans from 16 tasks at the 25th percentile to 27 tasks at the 75th

percentile.
On average, an individual task accounts for 3.4% of the total work, with a median

share of 2.1%. Task shares range from below 0.1% to as high as 27%, indicating
substantial heterogeneity in how labor is allocated across tasks within occupations.
To characterize this within-occupation concentration, we focus on two complementary
measures: (i) a normalized task Gini coefficient capturing overall inequality in task
shares. The normalized Gini ranges from 0 to 1, where 0 corresponds to a perfectly
even task mix and 1 corresponds to complete specialization in a single task, and (ii)
the occupation’s task shares devoted to the k most intensive tasks (the “top-k share”).

Conceptually, the normalized Gini summarizes how unevenly work shares are dis-
tributed across the entire task set. By contrast, the top-k share answers the question:
“How much of the job is accounted for by its largest tasks?”
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Figure 4. Distribution of task concentration measures across N = 290 Census occupa-
tions.

Figure 4 shows that occupations exhibit moderate but systematic task concentra-
tion. In Panel A, the mean normalized Gini is 0.355 (s.d. = 0.086), indicating sub-
stantial within-occupation inequality in task shares. A test of the null hypothesis of
uniform task allocation (normalized Gini = 0) is strongly rejected (p < 0.01), imply-
ing that task shares are not evenly distributed within occupations. At the same time,
concentration is far below the single-task extreme, consistent with a mixed regime in
which a small set of core tasks accounts for a disproportionate share of labor input
alongside a long periphery of less frequent tasks.

Panel B reinforces this interpretation. On average, the top three tasks account for
31% of total work labor input, while the top five tasks account for 46%. Although these
averages point to a stable core-periphery structure, the dispersion in top-k shares is
sizable: standard deviations range from 5% for the top task to 17% for the top five
tasks, indicating substantial heterogeneity in the strength of task concentration across
occupations. Thus, while no single task dominates most jobs, some occupations are
organized much more tightly around a small task core than others.

Taken together, these results suggest that even when the feasible task set is large,
occupations concentrate a sizable fraction of tasks’ shares in a relatively small num-
ber of activities, though the degree of such concentration varies meaningfully across
occupations. All concentration measures are normalized to account for mechanical
dependence on the number of observed tasks; formal definitions are provided in Ap-
pendix F.1.

4.2. Stylized Fact 2: Workers Concentrate in a Few “Vital” Tasks

Fact 1 established that occupations exhibit a pronounced “core-periphery” structure.
A natural concern is that this pattern may be driven by niche or low-FTE occupa-
tions, rendering it economically unimportant at the level of workers or the aggregate
economy. In Fact 2, we address this concern by mapping occupational task profiles
into economy-wide labor-market quantities using IPUMS ACS microdata for 2024.

We construct task FTEs by allocating each occupation’s total labor input FTEi across
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its constituent tasks using the estimated task shares π̂i,k, i.e. FTEi,k = π̂i,k · FTEi.
We analogously construct task wage bills by allocating each occupation’s total an-

nual labor cost WBi (annual earnings) across tasks using the same intensive-margin
shares, WBi,k = π̂i,k · WBi. This wage-bill decomposition should be interpreted as
a proportional imputation of labor costs, rather than as an estimate of task-specific
wage premia. These procedures yield a consistent decomposition of labor input and
labor cost into task-level units.

This aggregation reveals two distinct but complementary dimensions of the inten-
sive margin at the macro level. First, the representative worker has a concentrated
task portfolio, even when large occupations are weighted more heavily. Second, the
aggregate economy relies disproportionately on a small set of high-volume tasks, a
“vital few”, and these tasks account for an even larger share of the aggregate wage
bill.

The Representative unit of labor input. We first assess whether the core-
periphery structure identified in Fact 1 remains salient when viewed from the perspec-
tive of FTEs rather than occupations. To do so, we compute FTE-weighted averages
of the occupation-level concentration measures from Section 4.1, yielding statistics for
the representative worker in 2024. Table 1 compares these FTE-weighted moments to
their unweighted occupation-level counterparts.

Three patterns emerge. First, task concentration remains substantial for the repre-
sentative worker. The FTE-weighted top-3 task share is 29.1%, indicating that nearly
one-third of a typical worker’s labor input is devoted to just three activities. Second,
despite this slightly lower top-3 share relative to the unweighted occupation mean,
overall inequality in task allocation is higher for the representative worker: the FTE-
weighted normalized Gini coefficient rises to 0.378, compared to an unweighted mean
of 0.355. Third, large occupations encompass substantially more tasks. The represen-
tative worker is associated with 37 distinct tasks on average, compared to 29 for the
representative occupation.

Taken together, these results imply that large occupations are simultaneously
broader in their definition and more internally hierarchical. While they distribute
effort across a larger number of tasks, labor input within those task sets is more un-
evenly allocated. As a result, the core-periphery structure is not attenuated by FTE
weighting; rather, it is sharpened. Task specialization is therefore a defining feature of
the typical worker’s experience, not merely a property of occupational classifications.

Table 1. Task Concentration: Representative Occupation vs. Representative Worker
(2024)

Statistic Unweighted Mean FTE-Weighted (2024)

Top-3 Share (Ci,3) 0.311 0.291

Norm. Gini (G̃i) 0.355 0.378

Task Count (Ki) 29.3 36.0
Notes: Unweighted statistics are computed across Census occupations. FTE-weighted statistics weight occu-
pations by IPUMS FTEs counts in 2024. Ci,3 denotes the cumulative share of labor input allocated to the
three most intensive tasks within an occupation.

Macro Concentration: The “Vital Few.” We next examine whether the diversity
of occupations implies a corresponding diversity of tasks in the aggregate economy. To
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do so, we rank all unique tasks by their total economy-wide labor input (measured in
FTEs) and, separately, by their total contribution to the aggregate wage bill. We then
compute the cumulative shares of aggregate labor input and labor cost accounted for
by the top p percent of tasks within their respective distributions.

Table 2 reveals pronounced macro-level concentration in both labor input and labor
cost. Of the 8,492 unique tasks observed in 2024, the top 1% (approximately 85 tasks)
account for 18.3% of total labor input and 22.6% of the aggregate wage bill, when
ranked by their respective metrics. The top 5% account for 44.9% of FTEs and 51.2%
of the wage bill, while the top 10% account for 61.0% of FTEs and 66.3% of the wage
bill. Overall, a few hundred tasks dominate aggregate labor input. Similarly a few
account for an even larger share of aggregate labor cost.

This pattern mirrors the within-occupation core-periphery structure documented in
Fact 1: just as tasks’ share concentrate on a small subset of tasks within jobs, aggregate
economic value concentrates on a small subset of tasks across the economy.

Table 2. Macro Concentration of Task Exposure and Wage Bill: Shares Held by the
Top p% of Tasks (N = 8,491, O*NET 29.0, IPUMS 2024)

Top 1% Share Top 5% Share Top 10% Share

Number of unique tasks 85 425 850

Share of total FTEs 18.3% 44.9% 61.0%

Share of total wage bill 22.6% 51.2% 66.3%
Notes: Table reports the cumulative share of total economy-wide task exposure and wage-bill accounted

for by the top p percent of tasks, ranked by FTE and wage bill volume. FTEs allocate occupation-level

employment across tasks using π̂i,k, i.e. FTEk =
∑

i FTEi · π̂i,k. Task wage-bills allocate occupation-level
wage bills analogously, i.e. WBk =

∑
i WBi π̂i,k. Total FTEs NFTE = 83,552,261 (IPUMS 2024) and wage

bill: $3.13 · 1012 (1999 constant USD)

4.3. Stylized Fact 3: The Structure of AI Exposure Across Tasks

After establishing that aggregate labor input is concentrated in a limited set of
economically central tasks (Facts 1 and 2), the analysis now considers how this task
concentration maps into exposure to advances in artificial intelligence (AI). Because
AI capabilities operate at the task level rather than the occupational level, their
aggregate economic relevance depends not only on the number of exposed tasks but
also on the volume of labor input and labor cost allocated to those tasks.

This analysis adopts the task-level exposure framework of Eloundou et al. (2023),
which classifies tasks according to their potential for LLM–driven reductions in task
execution time.

Within this framework, LLMs are defined as general-purpose AI models trained on
large corpora of text that can generate language-based outputs and, for certain tasks,
substantially reduce the time required for human execution while maintaining output
quality. Each task is assigned to one of three mutually exclusive exposure categories:

• No Exposure–E0: Tasks for which LLMs cannot meaningfully reduce required
labor time while preserving output quality.

• Direct Exposure–E1: Tasks for which a standalone conversational LLM could
reduce task completion time by at least 50 percent.

• Software Exposure–E2: Tasks for which LLMs embedded in software tools
could reduce task completion time by at least 50 percent.
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Throughout this analysis, these categories are interpreted as measures of technical
exposure potential, the extent to which time savings may be technologically feasible,
rather than as estimates of realized adoption or observed productivity effects.

Tasks are classified into routine and non-routine categories using an LLM-based clas-
sification procedure, following the methodology introduced in Section 3.1. Appendix C
provides details on the classification taxonomy, model specifications, prompt design,
results, and robustness checks.

Finally, we aggregate task-level FTEs and task-level wage bills by task type and
AI exposure category. These aggregates reveal a pronounced divergence between ex-
posure measured in labor volume and exposure measured in labor cost. The following
paragraph reports the resulting estimates.
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Figure 5. Waffle plots of FTE and wage-bill composition by GPT-4 exposure cate-
gory (Eloundou et al. 2023). Color gradients are based on the two broader task cate-
gories manual and cognitive. Notes: Each waffle represents 0.02% of the total. Shares
are computed over the analysis sample (the subset of the 2024 workforce with valid
task profiles). Appendix Figure C1 provides an additional visualization based on a
Routine/Non-routine task categories.

From Figure 5 and the detailed results in Appendix Table C2, specific patterns
stand out. Tasks classified as not exposed (E0) account for 42.9% of aggregate FTEs.
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However, these tasks represent a smaller share of labor cost, capturing 33.6% of the
aggregate wage bill. Additionally, E0 task labor input is dominated by manual activ-
ities (routine and non-routine manual), which account for 63.5% of E0 FTEs. This
wedge between volume and value is consistent with the interpretation that the tasks
least amenable to LLM time savings are disproportionately concentrated in manual,
lower-wage segments of the task distribution.

Tasks with direct exposure to standalone conversational LLMs (E1) comprise 15.0%
of FTEs and 15.1% of the wage bill. The composition of E1 is sharply tilted toward
cognitive tasks: 97.3% of E1 FTEs are cognitive; more precisely, routine cognitive tasks
account for 67.4% of E1 FTEs, while manual tasks account for only 2.7%. Under the
E0 classification, technical exposure potential is therefore concentrated in codifiable
cognitive activities rather than manual work.

By contrast, tasks classified as exposed to LLMs embedded software tools (E2)
account for a larger share of labor cost, capturing 51.2% of the aggregate wage bill,
while representing 42.0% of FTEs. The E2 category is overwhelmingly cognitive with
97.1% of its FTEs, and 98.2% of the E2 wage bill in this type of tasks. Its employment
composition tilts toward higher-complexity cognitive work, with non-routine cognitive
tasks accounting for 70.3% of E2 FTEs (NC and NCI). A particularly pronounced
shift concerns non-routine cognitive interpersonal (NCI) activities: NCI tasks account
for only 8.35% of E1 FTEs but 32.6% of E2 FTEs.

Three implications follow from this decomposition. First, exposure measured in task
counts can be misleading: weighting by FTEs and wage bills yields different expo-
sure shares, so the aggregate relevance of AI exposure depends on where labor input
and labor cost are concentrated. Second, the exposure channel matters: under this
classification, the E1 category remains economically modest, whereas the E2 cate-
gory encompasses a majority of the wage bill despite representing a smaller share of
FTEs. Interpreted as a measure of technical feasibility, this pattern suggests that the
largest concentration of potential economic impact from LLMs may arise through com-
plementary software integration in higher-wage cognitive tasks, rather than through
standalone conversational LLMs. Third, exposure differs systematically by task type:
E0 is predominantly manual, E1 is concentrated in routine cognitive work, and E2 is
concentrated in non-routine cognitive work, including interpersonal activities.
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5. Measurement Validation: Wage Gradients from Task Shares Versus
Existing Proxies

This section treats wages as an external validation environment for the intensive-
margin measurement object recovered from task-frequency data. The goal is not to
identify causal wage effects of task structure. Rather, we ask whether moments con-
structed from the estimated task shares π̂i,k behave like economically meaningful
within-occupation labor-input allocations.

Wages are an imperfect external criterion, reflecting productivity, rents, sorting, and
institutions. We therefore use wage gradients only for validation and do not interpret
the regressions causally. We test whether moments of π̂i,k organize systematic wage
differences beyond observed work content and task breadth. Crucially, π̂i,k separates
task content (which tasks are performed) from task allocation (how labor input is
distributed across those tasks).

We focus on two validation checks. First, we test whether the specialization-wage
gradient exhibits economically interpretable heterogeneity with respect to work con-
tent: if specialization reflects productive focus primarily in non-routine work, the gra-
dient should be positive in low-routine occupations and attenuate as routine inten-
sity rises. Second, we test non-interchangeability: we examine whether these patterns
are specific to labor-input task shares, or whether they also arise under alternative
within-occupation weighting schemes commonly used in the task literature (impor-
tance weights, relevance weights, and core-supplemental heuristics).

5.1. Regression Evidence: Wage Association to Specialization and Work
Content

The premise is that occupations differ not only in the tasks they include (work con-
tent), but also in how labor input is distributed across those tasks (specialization).
While standard task-based approaches typically emphasize content, the present anal-
ysis quantifies the intensive margin of specialization and assesses whether it carries
independent wage association beyond work content. Addressing this question provides
insight into how changes in occupational task structure may affect earnings, even when
the set of tasks performed remains fixed.

A priori, the wage effects of occupational specialization are ambiguous. Concentration
of task shares in routine tasks may reflect Taylorist fragmentation and deskilling,
whereas concentration in non-routine tasks may reflect expertise, skill deepening, and
rent generation. We use the interaction between specialization and routine intensity
to distinguish empirically between these channels.

Guided by this distinction, we summarize each occupation’s task structure using
three complementary moments derived from O*NET task shares. First, occupational
specialization is measured using the normalized Gini coefficient G̃i, introduced in Sec-
tion 4.2; this coefficient increases as labor input becomes more concentrated in a nar-
row core of dominant tasks. Second, routine intensity, Routi, is defined as the sum of
task shares allocated to routine tasks, capturing the content of work. These measures
represent distinct features of task structure: specialization reflects the concentration
of labor input across tasks, whereas routine intensity reflects the composition of labor
input between routine and non-routine activities. Because Speci and Routi vary only
at the occupation level, identification comes from between-occupation variation; stan-
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dard errors are clustered by occupation accordingly. Finally, we define task breadth, Bi,
as the number of distinct tasks associated with occupation i. Appendix F.1 provides
formal definitions and construction details.

We relate worker wages to these occupation-level measures. Let worker l be employed
in occupation i and consider the following specification:

lnwl,i = βS SpecZi + βR RoutZi + βB ln(Bi) + βSR SpecZi · RoutZi +X ′
l,iγ + εl,i, (6)

where lnwl,i denotes log hourly wages in 1999 dollars. SpecZi is the standardized oc-

cupational specialization and RoutZi is the standardized routine intensity.
The control vector Xl,i includes gender, age, age squared, and fixed effects for

education bins and industry bins. All specifications use IPUMS person weights and
heteroskedasticity-robust standard errors clustered by occupation. Because specializa-
tion may reflect occupational sorting, firm organization, or rent-sharing, we interpret
all estimates as descriptive associations rather than causal effects.

Table 3. Wage Associations with Occupational Specialization

(1) (2) (3) (4)

Specialization 0.0853*** 0.0842*** 0.0607*** 0.0626***

(0.0156) (0.0162) (0.0134) (0.0137)

Log Breadth 0.00547 0.00480 0.00428

(0.0344) (0.0297) (0.0300)

Routine -0.108*** -0.102***

(0.0139) (0.0142)

Specialization × Routine -0.0194**

(0.00984)

Control variables ✓ ✓ ✓ ✓
R2 0.321 0.321 0.336 0.336

Clusters (occupations) 290 290 290 290

N 838,747 838,747 838,747 838,747
Notes: N = 838,747, representing a weighted population of 92,161,825 individuals. The dependent variable

is log hourly wages in 1999 CPI-adjusted dollars. The standardized normalized task Gini coefficient captures
occupational specialization, with higher values indicating greater concentration of labor input in a small set

of tasks. Routine intensity is the standardized share of labor input devoted to routine tasks. Task breadth is

the log number of distinct tasks mapped to occupation i. All specifications include controls for gender, age,
age squared, and fixed effects for education bins and industry bins, and are estimated using IPUMS person

weights. Robust standard errors clustered at the occupation level are reported in parentheses. ∗∗∗p < 0.01,
∗∗p < 0.05, ∗p < 0.10.

Table 3 reports a sequence of specifications designed to distinguish the wage asso-
ciations of occupational specialization from alternative explanations based on work
content and task breadth. Model (1) introduces occupational specialization as the sole
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task-based regressor. Specialization is strongly and positively associated with wages:
a one standard deviation increase in specialization is associated with an 8.5 percent
higher hourly wage (β̂S = 0.0853, s.e. = 0.0156), and the specification explains 32.1
percent of the variation in log hourly wages.

Model (2) adds controls for task breadth. Task breadth itself has a small and statis-
tically insignificant association with wages, while the specialization coefficient remains
essentially unchanged. This suggests that wage differences are not driven by the num-
ber of tasks performed within an occupation, but by how labor input is allocated
across those tasks.

Model (3) introduces routine intensity in a horse-race specification that jointly
includes specialization, routine intensity, and task breadth. Two results stand out.
First, routine intensity is strongly negatively associated with wages: a one–standard-
deviation increase in routine task share is associated with 10.8 percent lower hourly
wage (s.e. = 0.0139). Second, although attenuated relative to column (2), occupa-
tional specialization remains positively and statistically significantly associated with
wages even after controlling for work content (β̂S = 0.0606, s.e. = 0.0134). Including
routine intensity raises explanatory power to R2 = 0.336, while task breadth remains
statistically insignificant.

Model (4) adds an interaction between specialization and routine intensity. The

interaction term is negative but small and statistically significant at a 5% level (β̂SR =
−0.0194, s.e. = 0.0098), providing evidence of meaningful heterogeneity in the wage-
specialization gradient by routine intensity in this specification.

Taken together, these results indicate that specialization and routine content cap-
ture distinct wage-relevant margins. Specialization reflects how labor input is orga-
nized across tasks within an occupation, while routine intensity reflects what tasks
are performed. Even conditional on work content and breadth, specialization carries
independent and economically meaningful wage associations.

These associations are robust to alternative earnings definitions and sample re-
strictions. Appendix G.2 shows that the specialization premium persists when using
annual earnings instead of hourly wages, while Appendix G.3 documents similar pat-
terns within a full-time, full-year sample. Across specifications, the magnitude and
attenuation pattern of the specialization coefficient closely mirror the baseline results,
indicating that the observed associations are not driven by labor supply differences,
part-time work, or irregular employment arrangements. Finally, to visualize the inde-
pendent effects of these mechanisms, we provide conditional partial regression plots
for specialization and routine intensity in Appendix G.4.

5.2. Heterogeneity: Marginal Specialization - Wage Association by
Routine Intensity

Motivated by the intuition that specialization is expected to be more valuable in non-
routine occupations and the interaction term results, we examine the implied marginal
effect of specialization:

∂ lnw

∂SpecZ
= β̂S + β̂SR · RoutZ , (7)
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so that a negative β̂SR indicates a declining association to specialization as routine
intensity rises.
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Figure 6. Marginal Specialization; Wage Association by Routine Intensity (95% CI)

Figure 6 plots the implied marginal effects of specialization evaluated at different
values of routine intensity. In low-routine occupations, two standard deviations below
the mean share of labor input allocated to routine tasks, a one standard deviation
increase in specialization is associated with a 10.1% increase in wages (s.e. = 0.028;
p < 0.001). At the mean level of routine intensity, the implied marginal effect is 6.3%
(s.e. = 0.014; p < 0.001) and statistically significant. As routine intensity increases,
the implied marginal effect attenuates: at one standard deviation above the mean,
the estimate falls to 4.3% (s.e. = 0.014; p = 0.002), and at two standard deviations
above the mean it declines further and becomes statistically indistinguishable from
zero (p = 0.226). Exact marginal effect estimates are reported in Appendix Table G1.

This pattern is consistent with bundle-based interpretations in which specialization
is more valuable when it reflects concentration in complex, discretionary tasks rather
than standardized activities. In occupations with substantial non-routine content, spe-
cialization may proxy for deeper expertise and greater discretion in task performance,
yielding a larger wage premium; in more routine environments, specialization may
instead reflect concentration in standardized activities with lower barriers to entry.
Importantly, our analysis is descriptive and does not identify causal effects; we use
this lens only to interpret why the specialization-wage association varies systemati-
cally with routine intensity.

5.3. Comparison to Alternative Intensive-Margin Proxies

A common approach in the task literature is to construct within-occupation task
weights using proxies such as O*NET importance and relevance ratings, heuristic
“core–supplemental” priors, or uniform task weights. These summaries can be use-
ful for describing task salience, but they are not designed to recover an accounting-
consistent proxy for how labor input is allocated across tasks.

To assess whether our wage associations are specific to labor-input task shares, we
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re-estimate the fully specified wage model using three alternative weighting schemes
that preserve within-occupation heterogeneity: (i) O*NET importance weights, (ii)
O*NET relevance weights, and (iii) a core–supplemental prior assigning weight 2 to
core tasks and 1 to supplemental tasks. Uniform weights are excluded because equal
task weights mechanically imply zero specialization score (normalized Gini = 0).

We compare intensive-margin proxies using Pearson and Spearman rank correla-
tions and find that the task shares πi,k are positively but only moderately correlated
with rating- and taxonomy-based schemes. This indicates that πi,k captures a
distinct allocation measure compared to other intensive-magin proxies. In addition,
the Spearman and Pearson correlations between alternative proxies are moderate
indicating that they can materially re-rank occupations and should not be treated
as interchangeable measures of the intensive margin. Detailed results are reported in
Appendix G.5.

Table 4 shows that the negative association between routine intensity and wages
is robust across all weighting schemes. By contrast, the specialization coefficient is
sensitive to how tasks are weighted: under task-share (πi,k) weights, specialization
is positive and statistically significant and its interaction with routine intensity is
negative. In contrast rating- and heuristic-based specialization becomes negative or
statistically indistinguishable from zero and the interaction vanishes.

Table 4. Fully specified wage model (Table 3 - Column 4) under alternative intensive-
margin proxy schemes

Task-share (π) Importance Relevance Core-supp (2:1)

Specialization 0.0626∗∗∗ −0.0415∗∗ −0.0262∗ -0.0234

(0.0137) (0.0184) (0.0155) (0.0155)

Breadth 0.00428 0.0629 0.0367 0.0313

(0.0300) (0.0397) (0.0351) (0.0344)

Routine −0.102∗∗∗ −0.123∗∗∗ −0.121∗∗∗ −0.124∗∗∗

(0.0142) (0.0167) (0.0176) (0.0169)

Specialization × Routine −0.0194∗∗ 0.00391 0.00366 0.0126

(0.00984) (0.0138) (0.0133) (0.0118)

Control variables ✓ ✓ ✓ ✓
R2 0.336 0.336 0.334 0.334

Clusters (occupations) 290 290 290 290

N 838,747 838,747 838,747 838,747

Notes: Each column reports the fully specified wage regression (Section 5.1–Model 4) from the corresponding

proxy-specific table. Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

If specialization proxies for depth, its wage gradient should be positive and strongest
in non-routine occupations; in highly routine work, specialization may carry a smaller
premium or none. This prediction is consistent with evidence that occupations requir-
ing greater expertise tend to pay higher wages and that expertise measures have robust
predictive power for earnings (Autor and Thompson 2025). Against this benchmark,
the sign reversal under importance/relevance and core-supp weights is more naturally
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interpreted as a proxy mismatch: rating- and taxonomy-based schemes capture task
salience rather than the within-occupation allocation of labor input.

We replicate the marginal-effect exercise in Section 5.2 under each alternative proxy.
The implied marginal effects under rating-based and heuristic schemes are generally
statistically insignificant; when significant, they are often negative even in low-routine
occupations and exhibit no comparable attenuation pattern. Taken together, these
weak and unstable marginal-effect patterns indicate that alternative weighting schemes
are not empirically interchangeable with task-share weights for measuring occupational
specialization. Detailed results are reported in Appendix G.6.
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6. Concluding Remarks

This paper develops an interpretable measurement methodology for the intensive mar-
gin of work using publicly available O*NET task-frequency survey responses. Our
central output is a within-occupation task share, π̂i,k, that sums to one within each
occupation and can be interpreted as a proxy for the within-occupation allocation of
labor input to tasks. Under a homogeneous within-occupation task-duration assump-
tion, π̂i,k coincides with task time shares; more generally, it provides a transparent
intensity weighting for aggregating task-level attributes into occupation-level indices.
Because π̂i,k behaves like a budget share, it delivers a disciplined mapping from task
content to standard occupation aggregates: for any task attribute ak, such as exposure,
employment or wages.

Methodologically, we translate O*NET’s ordinal frequency categories into contin-
uous estimators of task activity and task shares with uncertainty. We recover the
unconditional distribution of frequency categories for each occupation-task pair (i, k),
convert these probabilities into an annualized task-flow estimator µ̂i,k using a trans-
parent calibration from ordinal bins to yearly occurrences, and obtain π̂i,k by normal-
izing task flows within occupation. To propagate sampling uncertainty from survey
responses into µ̂i,k, π̂i,k, and downstream statistics, we introduce a covariance comple-
tion procedure that respects the simplex geometry of frequency-category probabilities
and yields a positive semidefinite covariance matrix consistent with released marginal
uncertainties. This delivers a unique set of fully specified, inference-ready measure-
ments of the intensive-margin task weights.

Applying the framework to O*NET v29.0 and IPUMS-ACS microdata highlights
several features of work organization and AI exposure. Occupations exhibit pronounced
core-periphery structures: a small set of tasks accounts for a substantial share of im-
plied labor input, and concentration is the norm rather than the exception. This con-
centration matters for economic measurement. Uniform task weights or coarse task
groupings can misstate which tasks dominate labor input and compensation, and can
shift the implied incidence of task-level capability labels once those labels are aggre-
gated to the occupation level. In the context of AI capabilities, an employment lens
versus a wage-bill lens changes both the level and composition of implied exposure,
and can alter which occupations and task categories account for the economic stakes
of AI. Finally, the intensive-margin objects provide a unified way to characterize work
content. In descriptive wage regressions, specialization is positively associated with
wages conditional on work content, with the strongest relationships concentrated in
non-routine occupations, consistent with the idea that specialization primarily pays
off in complex task environments. This specialization metric is not recovered by other
standard intensive-margin proxies.

Several limitations motivate natural extensions. Because O*NET does not report
task durations, π̂i,k is best interpreted as a frequency-based proxy for labor input
rather than a direct time-use measure. Hence, heterogeneity in task duration could
affect the mapping to time shares and implied concentration. A first priority is there-
fore to validate and calibrate durations using time-use data (e.g. ATUS). This will
enable a better characterization of π̂i,k. In addition, O*NET task lists are not a full
census of workplace activities and update with delay, which may understate emerging
tasks. Extending the framework to repeated task-content snapshots would allow us
to quantify how work content, task concentration, and π̂-weighted exposure evolve
over time. Finally, while our inference procedure transparently propagates sampling
uncertainty, richer within-occupation dependence structures, especially cross-task de-
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pendence, could improve uncertainty quantification for downstream aggregates.
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Appendix A.

A.1. Glossary of Variables

• p̂i,k,r ∈ [0, 1]: The unconditional probability that a worker in occupation i selects
frequency category r for task k.

• µ̂i,k ∈ [0, 2080]: The expected annual flow of task k occurrences for a worker in
occupation i.

• π̂i,k ∈ [0, 1]: The expected labor input allocated to task k within occupation i.
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A.2. Variance of the Unconditional Probability Vector

The unconditional probability vector p̂i,k is constructed by scaling the conditional fre-

quency distribution F̂i,k by the relevance probability R̂i,k. We treat the estimators of
the extensive margin (relevance) and the intensive margin (frequency) as statistically
independent random variables inherent to the survey design. Under this independence
assumption, the variance of the unconditional estimators is given by Goodman’s prod-
uct variance formula (Goodman 1960).

• For the mass point at zero (r = 0), which represents the complement of the
extensive margin:

Var(p̂i,k,0) = Var(1− R̂i,k) = Var(R̂i,k). (A1)

• For the active frequency categories (r ∈ {1, . . . , 7}):

p̂i,k,r = R̂i,k · F̂i,k,r. (A2)

Applying the exact variance formula for the product of two independent random
variables:

Var(p̂i,k,r) = F̂ 2
i,k,r Var(R̂i,k) + R̂2

i,k Var(F̂i,k,r) + Var(R̂i,k)Var(F̂i,k,r). (A3)

where R̂i,k and Var(R̂i,k) denote the point estimate and variance of the relevance

estimator for task k in occupation i, and F̂i,k,r and Var(F̂i,k,r) denote the point estimate
and variance of the conditional frequency estimator for category r. This calculation
yields the vector of marginal variances for the task frequency distribution.
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A.3. Covariance Completion

Estimating the variance of the annualized task frequency, µ̂i,k = w⊤p̂i,k, requires

the full covariance matrix of the probability vector, denoted Σ̂i,k ∈ eS8. Crucially,
the elements of p̂i,k are structurally dependent: because they sum to unity, they are
necessarily correlated (i.e. an increase in the probability of one frequency category ne-
cessitates a decrease in others). However, the O*NET survey design identifies only the
marginal variances (the diagonal elements), leaving these cross-category correlations
undefined.

To recover a valid covariance structure, we exploit the geometric properties of the
probability simplex. Any valid covariance matrix for a probability vector must satisfy
the tangent space constraint Σ1 = 0 (Aitchison 1982), which explicitly encodes the
negative correlation structure required by the unit-sum constraint. We estimate the
latent covariance matrix Σ̂i,k by solving a convex completion problem that matches the
observed marginal variances while minimizing the squared Frobenius norm ∥Σ∥2F . This
objective function acts as a parsimonious regularizer (Boyd and Vandenberghe 2004),
recovering the minimum-energy covariance structure required to satisfy the geometric
constraints without imposing spurious correlations.

Let vi,k denote the vector of marginal variances derived in Appendix A.2, where the

r-th element corresponds to Var(p̂i,k,r). We obtain Σ̂i,k as the solution to the following
semidefinite program (SDP):

Σ̂i,k ∈ arg min
Σ∈S8

∥Σ∥2F ,

s.t. Σ ⪰ 0,

diag(Σ) = vi,k,

Σ1 = 0.

(A4)

where Σ ⪰ 0 ensures the matrix is positive semidefinite. We solve this optimization
using the MOSEK solver, the parameters are available in Appendix D.1 (MOSEK
ApS 2025). With the full covariance matrix recovered, the variance of the annual flow
estimator follows from the quadratic form:

Var(µ̂i,k) = w⊤Σ̂i,kw. (A5)

This scalar variance provides a measure of uncertainty for the annualized flows, serving
as the requisite input for characterizing the precision of the standardized labor service
estimates.
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A.4. Asymptotic Variance of Standardized Task Intensities

This section derives the asymptotic variance for the standardized task intensity π̂i,k.
We begin with the general case where tasks may have heterogeneous durations, and
then derive the simplified estimator used in the main text.

Let di,k denote the fixed duration (in hours) per occurrence of task k. The task
intensity is defined as the share of total occupational labor input allocated to task k:

π̂i,k =
µ̂i,k di,k
Mi

, where Mi =
∑
j∈Ki

µ̂i,j di,j . (A6)

We assume the flow estimators {µ̂i,j}j∈Ki
are independent random variables across

distinct tasks. Applying the multivariate delta method, the asymptotic variance is
given by the first-order Taylor expansion:

Var(π̂i,k) ≈
∑
j∈Ki

(
∂ π̂i,k
∂ µ̂i,j

)2

Var(µ̂i,j). (A7)

The partial derivatives with respect to the flow vectors are derived via the quotient
rule. Note that ∂Mi

∂µ̂i,j
= di,j .

For the own-task effect (j = k):

∂π̂i,k
∂µ̂i,k

=
di,kMi − (µ̂i,kdi,k) di,k

M2
i

=
di,k
Mi

(1− π̂i,k) . (A8)

For the cross-task effect (j ̸= k):

∂π̂i,k
∂µ̂i,j

= −
π̂i,k di,j
Mi

, j ̸= k. (A9)

Substituting these gradients into the variance sum yields the general asymptotic vari-
ance:

Var(π̂i,k) ≈ 1

M2
i

d2i,k(1− π̂i,k)
2Var(µ̂i,k) + π̂2

i,k

∑
j ̸=k

d2i,j Var(µ̂i,j)

 . (A10)

And making the assumption from Section 2 on di,j = 1 for all j ∈ Ki yields:

Var(π̂i,k) ≈ 1

M2
i

[
(1− 2π̂i,k)Var(µ̂i,k) + π̂2

i,k Var(Mi)
]
. (A11)
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A.5. Modeling Assumptions and Choices

The empirical strategy relies on a set of structural assumptions and pragmatic mod-
eling choices that ensure tractability, internal consistency, and reproducibility. These
assumptions underpin the estimation of task distributions, covariance structures, and
FTE allocations.

• Survey-stage independence. The task relevance R̂T i,k and conditional fre-

quency F̂ T i,k,r are treated as statistically independent. This enables exact
variance evaluation for unconditional category probabilities p̂i,k,r through the
product-variance formula.

• Aggregation independence. Tasks are assumed independent within and
across occupations.

• Normal inference. Interval estimates rely on normal approximations obtained
from delta-method variance propagation, with truncation applied as needed to
respect simplex or nonnegativity constraints.

• Covariance completion. The latent covariance matrix of the eight-category
probability vector is recovered by selecting a positive semidefinite matrix that
matches the observed O*NET marginal variances and satisfies the simplex
tangent constraint (Σ1 = 0). Among all feasible completions, we choose the
minimum–Frobenius-norm solution, argminΣ ∥Σ∥2F , which is a strictly convex
objective over a convex feasible set and therefore yields a unique solution. This
solution selects the “minimum-energy” covariance consistent with the observed
marginals and avoids introducing correlation structure beyond what is required
by the constraints.

• Annualization mapping. Ordinal task-frequency categories are mapped to
expected annual occurrence counts using a fixed midpoint vector w, providing a
consistent and conservative annualization of task frequencies.

• Equal per-occurrence duration. Within an occupation, occurrences of a
given task are assumed to have a common expected duration. Under this as-
sumption, annualized occurrence counts proxy relative task shares across tasks.

• Task–DWA allocation. The O*NET crosswalk linking tasks to DWAs is
treated as fixed. When a task maps to multiple DWAs, its FTE contribution
is split evenly across linked DWAs to avoid double counting.

• Numerical stabilization. Small ε-regularization and renormalization are ap-
plied to near-zero probabilities or standard errors to maintain numerical feasibil-
ity. Solutions are accepted when positive semidefiniteness holds within standard
solver tolerances.
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A.6. Example Estimated Task Flows and Task Shares for an Occupation

Table A1. Illustrative estimated task flows and task shares for “Farm Labor Contrac-
tors”

Task µ̂i,k π̂i,k (%)

Supervise the work of contracted employees. 471.29 (116.16) 24.05 (5.40)

Employ foremen to deal directly with workers when
recruiting, hiring, instructing, assigning tasks, and
enforcing work rules.

354.35 (142.12) 18.08 (6.30)

Pay wages of contracted farm laborers. 342.61 (167.77) 17.48 (7.30)

Provide food, drinking water, and field sanitation
facilities to contracted workers.

286.79 (51.34) 14.63 (3.00)

Recruit and hire agricultural workers. 246.38 (90.35) 12.57 (4.40)

Furnish tools for employee use. 142.47 (29.96) 7.27 (1.70)

Direct and transport workers to appropriate work
sites.

115.83 (25.31) 5.91 (1.50)

Notes: µ̂i,k denotes the estimated annualized task flow (occurrences per worker-year) constructed from the

unconditional O*NET frequency distribution and the annualization vector w. π̂i,k denotes the implied within-
occupation task share under the normalization di,k = 1, computed as π̂i,k = µ̂i,k/

∑
j∈Ki

µ̂i,j . Standard errors

are propagated via the delta method as described in Appendix A.4. Each cell reports estimate (SE). For π̂i,k,
both the point estimate and the SE in parentheses are reported in percentage points.
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Appendix B.

B.1. IPUMS Descriptive Statistics

Our analysis utilizes microdata from the 2024 American Community Survey (ACS) as
provided by IPUMS (Ruggles et al. 2025). We restrict the analytical sample to civilian,
non-institutionalized individuals aged 16 to 64 who are currently employed as wage
and salary workers. We exclude self-employed individuals, unpaid family workers, and
those in military occupations to focus on the labor supply of the core workforce. All
earnings data are deflated to constant 1999 U.S. dollars using the CPI-U-RS. Hourly
wages are constructed by dividing real annual earnings by total annual hours, where
annual hours are the product of usual weekly hours and the midpoint of the weeks-
worked interval. To mitigate the impact of measurement error common in self-reported
earnings and hours data, we trim observations with calculated hourly wages below the
1st and above the 99th percentiles. Consequently, the observation counts for hourly
wage statistics in Table B1 are approximately 2% lower than for other demographic
variables.

Table B1. 2024 Population Descriptive Statistics

Variable Mean (SD) N

Demographics

Age 39.88 (12.90) 1,279,118

Female (%) 48.70 (50.00) 1,279,118

HS or less (%) 38.20 (48.60) 1,279,118

Some college (%) 21.80 (41.30) 1,279,118

College or more (%) 40.00 (49.00) 1,279,118

Labor Supply

Usual weekly hours 39.11 (10.99) 1,279,118

Weeks worked (midpoint) 48.04 (9.22) 1,279,118

Earnings (1999$)
Annual earnings 36,687 (40,481) 1,279,118

Log annual earnings 10.06 (1.08) 1,279,118

Hourly wagea 17.72 (14.24) 1,252,503

Log hourly wagea 2.62 (0.71) 1,252,503

Observations (unweighted) 1,279,118

Population (weighted) 139,516,356

Notes: Data from the 2024 IPUMS American Community Survey (ACS). Sample includes em-
ployed civilian wage-workers aged 16–64. Means are weighted using personal weights (perwt).
Binary variables (Female, Education) are reported as percentages.
a Hourly wage variables are trimmed at the 1st and 99th percentiles to mitigate measurement
error, resulting in a lower observation count for these rows.
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Full-time-equivalent labor input. Let ℓ index individuals in the ACS, and let
UHRSWORKℓ denote usual weekly hours worked andWKSWORKℓ denote a midpoint
for weeks worked last year (constructed from WKSWORK2 bins). We define annual
hours as

Hℓ = UHRSWORKℓ ·WKSWORKℓ. (B1)

We then define the individual’s full-time-equivalent labor input as

FTEℓ =
Hℓ

HFT
, HFT = 2080 hours (40× 52). (B2)

Using the IPUMS person weight PERWTℓ, occupation-level FTE labor input is

FTEi =
∑
ℓ∈i

PERWTℓ · FTEℓ. (B3)

After performing the FTEs change, we find that the population N = 139, 516, 356
represents NFTE = 128, 025, 669 FTEs.
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B.2. O*NET Descriptive Statistics

We use task-level ratings from version 29.0 of the O*NET database, released in Au-
gust 2024. The analysis draws on the Task Ratings table, which reports standardized
assessments of task attributes collected from job incumbents and subject-matter ex-
perts.

The Task Ratings table covers 879 distinct occupations defined at the O*NET–SOC
level. Across these occupations, the data include 17,639 occupation–task combinations,
corresponding to 16,580 unique task statements. Tasks are evaluated along three dis-
tinct rating scales (importance, relevance, and frequency), spanning seven task cate-
gories.

For each occupation–task–scale combination, the table reports a mean data value
along with supporting survey statistics, including the number of respondents (N),
standard errors, and confidence interval bounds. In total, the table contains 13,604 non-
missing task ratings, reflecting the fact that not all tasks are rated for all occupations
or scales. Metadata fields indicate whether a rating is recommended for suppression,
the date of data collection, and the source of the assessment.
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Appendix C.

C.1. LLM Specifications for Task Classification

We use a LLM to classify each O*NET task statement into one of six mutually exclusive
task categories: RC, RM, NC, NM, NCI, and NMI as defined by Autor and Thompson (2025),
where:

• Routine Cognitive – RC: Tasks involving cognitive processes that are codifi-
able, i.e. that can be fully specified through a set of ordered instructions. These
tasks are procedural, structured, repetitive, and rule-based, and often require
precision.

• Routine Manual – RM: Tasks that involve physical labor that are codifiable,
i.e. can be accomplished by following explicit rules. They rely on predictable,
consistent operations with clear steps.

• Non Routine Cognitive – NC: Non-codifiable tasks that require analytical
skills. They are analytic in that they require cognitive capacity such as judg-
ment, strategic thinking, problem-solving, creativity, intuition, visual processing
and/or analysis. They are non-codifiable, meaning that the rules for accomplish-
ing the task are not sufficiently well understood to be specified explicitly to be
executed by machines.

• Non Routine Manual – NM: Tasks that involve physical work which cannot
be fully codified due to the need for on-the-spot adaptation, fine motor processing
skills and/or situational judgment. These tasks demand manual dexterity and
flexibility in response to changing conditions.

• Non Routine Cognitive Interpersonal – NCI: Non-codifiable cognitive
tasks that fundamentally involve interpersonal interaction, including influence,
leadership, persuasion, or strategic engagement with others.

• Non Routine Manual Interpersonal – NMI: Non-codifiable manual tasks
centered on care, service, or assistance, requiring physical presence, emotional
labor, or direct personal interaction.

Classifications are produced at the task level and keyed by their associated Task ID.

C.1.1. Inputs

For each task, the model receives three inputs:

(1) The task identifier (Task ID),
(2) The job title (Title) associated with the task,
(3) The task description text (Task) as recorded in O*NET.

Tasks are evaluated as they would have been understood prior to the diffusion of
personal computing, enterprise software, the internet, and modern robotics using the
prompt shown in Appendix C.2. The model is explicitly instructed to classify tasks
based on codifiability in principle as of that period and not on subsequent adoption
or technological diffusion. The model is instructed to assign exactly one category per
task and to return outputs in a strict JSON format consistent with the predefined
schema.
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C.1.2. Model and inference configuration

All classifications are generated using Google Gemini via the google.genai client,
with model identifier gemini-3-flash-preview. To minimize stochastic variation, in-
ference is performed with a low temperature setting (T = 0.01). We enable internal
model reasoning using a medium thinking level while constraining outputs to struc-
tured JSON by specifying response mime type = application/json and enforcing
a response schema at generation time. The LLM is used solely as a semantic classifier
and has no access to external tools, databases, or post-processing logic beyond schema
validation.

C.1.3. Output

The model is required to return a JSON, where each object contains exactly two
required fields: task id and classification. The classification field is restricted
to the six admissible labels. Formally, each returned item satisfies:

{

"task_id": "<string>",

"classification": "RC" | "RM" | "NC" | "NM" | "NCI" | "NMI"

}

Any response that fails to satisfy this schema is rejected.
The final output is a task-level dataset containing task id and its assigned category

label in {RC, RM, NC, NM, NCI, NMI}.
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C.2. LLM Prompt

You will be provided with a task description and the job title (oc-
cupation) it is related to. Carefully read and understand the de-
scription, then classify it into one of the following six categories
based strictly on its characteristics.
==================================================
CATEGORY DEFINITIONS
==================================================

1. Routine Cognitive Tasks (RC)
Definition: Tasks involving cognitive processes that are codifi-
able, i.e. that can be fully specified through a set of ordered
instructions. These tasks are procedural, structured, repetitive,
and rule-based, and often require precision.
Examples: Data entry, basic bookkeeping, standardized clerical work,
repetitive customer service (e.g. bank teller).

2. Routine Manual Tasks (RM)
Definition: Tasks that involve physical labor that are codifiable,
i.e. can be accomplished by following explicit rules. They rely on
predictable, consistent operations with clear steps.
Examples: Picking/sorting, repetitive assembly.

3. Non-Routine Cognitive Analytic Tasks (NC)
Definition: Non-codifiable tasks that require analytical skills.
They are analytic in that they require cognitive capacity such as
judgment, strategic thinking, problem-solving, creativity, intu-
ition, visual processing and/or analysis. They are non-codifiable,
meaning that the rules for accomplishing the task are not suffi-
ciently well understood to be specified explicitly to be executed by
machines.
Examples: Deciphering handwriting on a check, strategic planning,
forming and testing hypotheses, medical diagnoses, legal writing,
complex problem solving, creative design.

4. Non-Routine Manual Tasks (NM)
Definition: Tasks that involve physical work which cannot be fully
codified due to the need for on-the-spot adaptation, fine motor
processing skills and/or situational judgment. These tasks demand
manual dexterity and flexibility in response to changing conditions.
Examples: Skilled craftsmanship, janitorial services, truck driving,
complex repair work.

5. Non-Routine Cognitive Interpersonal Tasks (NCI)
Definition: Non-codifiable cognitive tasks that fundamentally in-
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volve interpersonal interaction, including influence, leadership,
persuasion, or strategic engagement with others.
Examples: Negotiation, team management, consulting, persuading or
selling.

6. Non-Routine Manual Interpersonal Tasks (NMI)
Definition: Non-codifiable manual tasks centered on care, service,
or assistance, requiring physical presence, emotional labor, or di-
rect personal interaction.
Examples: Caregiving, food service, hospitality, hairstyling, flight
attendants.

==================================================
GUIDANCE FOR BORDERLINE CASES
==================================================

Use the job title to contextualize the task description when nec-
essary.

==================================================
INSTRUCTIONS
==================================================

For the task description provided, carefully analyze its features.
Then classify the task as belonging to one of these categories,
based on how well the task matches. Output only a single class (e.g.
RC, RM, NC, NM, NCI, or NMI).

- Assign exactly one category to each task.
- Do not invent new categories.
- Output a JSON list matching the provided schema exactly.
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C.3. The Distribution of Labor Input Across Classes

The LLM inference assigns a task-class label to each O*NET task description. Task-
level classifications are aggregated to the Census occupation level using task shares,
yielding an estimator of the proportion of each task share within an occupation.

Let k represent tasks and i represent Census occupations. Let πi,k denote the task
share of task k within occupation i, and let Ck ∈ {RC,RM,NC,NM,NCI,NMI}
indicate the LLM-assigned class for task k. For each class c, the class-specific task
share of occupation i is defined as follows:

νi,c =
∑

k∈K(i)

πi,k 1{Ck = c}, (C1)

where, K(i) denotes the set of tasks associated with occupation i. In contrast to
occupation-level task intensity indices, νi,c constitutes a labor-share partition, as-
signing exactly zero mass to classes with no task share in a class within an occupation.

Class-specific task shares are computed for 66.3% of Dorn occupations (Autor
and Dorn 2013) with available task shares, encompassing 80.9% of aggregate employ-
ment as measured by labor-share weights (LSWT). Table C1 presents the resulting
distribution of labor input across task classes. Labor input is distributed unevenly
across task types: cognitive tasks comprise 71.8% of total labor input, whereas manual
tasks account for 28.2%.

To assess external validity and evaluate the application of LLMs as synthetic task
coders in economic measurement, the LLM-based labor-share measures are compared
to occupation-level task intensity indices from the replication kit of Acemoglu and
Restrepo (2022), which builds on Acemoglu and Autor (2011) and Autor, Levy,
and Murnane (2003). These benchmark indices are derived from occupation-level
descriptors intended to capture pre-digital task content. Since the estimator (i) is a
labor-share partition that assigns zero mass to classes with no measured allocation
and (ii) reflects contemporaneous task execution as encoded in O*NET v29.0, rank-
and correlation-based agreement is expected to be lower in sparsely represented
categories relative to pre-digital benchmarks.

Figure 1 and Table C1 present the comparison for the matched set of occupa-
tions (N = 216). Overall agreement is high: across task categories, the weighted
Pearson correlation between the LLM-based measures and the benchmark is 0.606,
while the unweighted Pearson correlation is 0.547 and the unweighted Spearman
rank correlation is 0.575. The higher weighted correlations suggest that alignment is
strongest among large occupations, which constitute the majority of aggregate labor
input.

Alignment is especially strong for manual task classes and for non-routine cogni-
tive interpersonal work. Routine manual tasks exhibit a weighted correlation of 0.665,
non-routine manual tasks 0.757, and non-routine cognitive interpersonal tasks 0.772.
Routine cognitive tasks display a lower correlation (weighted R = 0.450), which is
consistent with two aspects of the comparison. First, benchmark indices are designed
to summarize pre-digital occupational descriptors, while the content and organization
of cognitive work likely evolved more substantially with the adoption of enterprise soft-
ware than did many physically grounded manual tasks. Second, the present measures

42



are derived from task descriptions in O*NET v29.0 and classified within a modern
task context. Therefore, to the extent that task content changed between 1980 and
2025, divergence from pre-digital benchmarks is anticipated.

Another source of divergence is mechanical rather than classificatory. Benchmark
indices assign continuous intensity scores to nearly all occupations, whereas the LLM-
based approach records zero task share when no tasks are measured in the class.
Consequently, correlation and rank-based measures are mechanically reduced in classes
with a high proportion of zeros, most notably non-routine manual interpersonal (73.6%
zeros), which also constitutes a small share of aggregate labor input (3.4%). Overall,
these results demonstrate that LLM-based classification aligns closely with established
task taxonomies in economically significant classes.
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C.4. Alternative Plot - Routine vs Non-Routine Exposure to LLM
Exposure
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(a) Task-FTE composition by GPT-4 exposure for a population of N = 91,923,781 workers
(IPUMS 2024) across 8,473 tasks.
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(b) Wage-bill composition by GPT-4 exposure for an aggregate wage bill of $3.12 ·1012 (1999
constant USD).

Figure C1. Waffle plots of Task-FTE and wage-bill composition by GPT-4 exposure
category. Color gradients are based on the two broader task categories routine and
non-routine. Notes: Each waffle represents 0.02% of the total. Shares are computed
over the analysis sample (the subset of the 2024 workforce with valid task profiles).
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C.5. Detailed LLM Exposure Results
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Appendix D.

D.1. Solver Settings and MOSEK Parameters

We implement the semidefinite programming (SDP) estimation using the MOSEK
conic interior-point optimizer. To guarantee that the resulting covariance matrices are
mathematically robust and strictly positive semi-definite, we enforce a strict tolerance
profile. Specifically, we reject inaccurate solutions and minimize the Frobenius norm
using the following configuration:

solver order = (MOSEK)

optimiser norm = Frobenius

accept inaccurate = False

Table D1. MOSEK/IPM configuration used in all main experiments.

Parameter Value Purpose

MSK DPAR INTPNT CO TOL REL GAP 10−10 Relative duality gap tolerance

MSK DPAR INTPNT CO TOL PFEAS 10−10 Primal feasibility tolerance

MSK DPAR INTPNT CO TOL DFEAS 10−10 Dual feasibility tolerance

MSK DPAR INTPNT CO TOL MU RED 10−10 Barrier reduction (mu) tolerance

MSK IPAR NUM THREADS 5 Parallelism

MSK IPAR PRESOLVE USE 1 Enable presolve

MSK IPAR INTPNT SCALING 1 Enable scaling
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D.2. Covariance Model Robustness

In this section, different robustness checks are applied to evaluate the numerical feasi-
bility and compositional integrity of each covariance matrix Σi,k, the covariance matrix
of categories of task k in occupation i.

D.2.1. Feasibility and Simplex Geometry

For each matrix Σi,k, we verify that (i) the matrix is positive semidefinite (PSD), (ii)
the simplex geometry implied by task shares is maintained, and (iii) the completed
variances align with observed survey marginals.

Diagnostics definitions. Let 1 be an all-ones vector of length n = 8 (frequency
categories), and v = (sep)

2 the vector of design-based marginal variances. For each
completed covariance Σ, the following metrics are computed:

Tangent residual: r∞ = max
(
∥Σ1∥∞, ∥1⊤Σ∥∞

)
, (D1)

PSD check: λmin(Σ) ≥ −10−8, (D2)

Diagonal deviation: d∞ = ∥diag(Σ)− v∥∞, (D3)

Uncertainty magnitude: trace(Σ), (D4)

Effective rank: reff = exp
(
−
∑
j

pj log pj

)
, pj = λj/

∑
ℓ

λℓ, (D5)

In this context, λj denotes the eigenvalues of Σ, which are clipped at zero to enforce
positive semidefiniteness. The entropy-based effective rank reff ∈ [0, 7] quantifies the
dimensionality of task-level uncertainty.

Results and discussion. Table D2 summarizes the convergence diagnostics for the
full sample of 12,495 tasks. The optimization successfully recovered a mathematically
valid covariance structure for 100% of tasks. The tangent residual (≈ 4 × 10−11) is
near machine precision, confirming that the estimated matrices reside strictly on the
tangent space of the simplex. This ensures that the structural constraint–that proba-
bilities must sum to one–is preserved perfectly in the variance domain. The diagonal
deviation reflects the geometric tension between the stochastic survey estimates and
the strict requirement that a covariance matrix be positive semi-definite. The maxi-
mum observed deviation (9.01× 10−6) corresponds to a standard error approximation

discrepancy of roughly
√
10−6 ≈ 0.001. This magnitude is negligible relative to stan-

dard survey sampling error, indicating that the estimator maintains high fidelity to
the input data while correcting for geometric infeasibilities. Finally, the effective rank
(mean = 3.76) highlights the structure of survey uncertainty. While the probability
space has 8 dimensions, the uncertainty typically occupies a subspace of fewer than
4 dimensions. This suggests that measurement error is not random white noise dis-
tributed across all categories, but is instead structured reflecting respondent selecting
only a few frequency bins (e.g. distinguishing “Weekly” from “Monthly”). This sup-
ports the hypothesis that respondent assessments are coherent, with disagreement
constrained to specific, localized shifts rather than broad divergence.
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Table D2. Covariance Completion Feasibility Diagnostics

All Tasks (N = 12,495)

Metric Value Tasks Removed

PSD Percentage 100 % 0

Max tangent residual 4.29× 10−11 0

Max diagonal deviation 9.01× 10−06 0

Trace (mean [SD]) 0.021 (0.009) n/a

Effective rank (mean [SD]) 3.76 (1.02) n/a

D.2.2. Functional Variance Bounds and Position

The variance of an annual-occurrence functional is benchmarked against its feasible
range for each task.

Diagnostics definitions. Let w ∈ R8 denote the fixed annual-occurrence weights
over the eight O*NET frequency categories, let v = Var(pi,k) be the vector of design-

based marginal variances, and let Σ̂ denote the completed task-level covariance matrix.
The realized functional variance associated with task (i, k) is given by w⊤Σ̂w.

To assess whether this value is geometrically plausible given the marginal variances
and the simplex constraint, we compute the feasible lower and upper bounds through
the following convex programs, which impose the same constraints used during co-
variance completion—positive semidefiniteness, fixed diagonal entries, and tangency
to the simplex:

V = min
Σ⪰0

w⊤Σw s.t. diag(Σ) = v, Σ1 = 0, (D6)

V = max
Σ⪰0

w⊤Σw s.t. diag(Σ) = v, Σ1 = 0. (D7)

The relative position of the completed functional variance within its task-specific fea-
sible interval is then summarized by the normalized statistic

pos =
w⊤Σ̂w − V

V − V
∈ [0, 1]. (D8)

Tasks whose normalized position lies near the boundaries of the feasible set–specifically,
pos < 0.05 or pos > 0.95–are flagged as extreme and removed from downstream anal-
ysis. This robustness filter excludes covariance structures that, while feasible, imply
implausibly tight or excessively diffuse uncertainty relative to the geometric constraints
of the probability simplex.

Results and discussion. Table D3 summarizes the position of the estimated func-
tional variances relative to their theoretically feasible bounds. Across the full sample
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of 12,495 tasks, the mean normalized position is 0.39 (SD = 0.13). This statistic in-
dicates that for the typical task, the covariance structure recovered by the minimum
Frobenius norm objective lies near the center of the feasible set, rather than clustering
at the extremes. This centrality suggests that the estimator is generally ”conserva-
tive,” avoiding the imposition of maximal or minimal correlations unless driven by the
data. However, the analysis identifies a subset of 670 tasks (5.36%) where the normal-
ized position falls outside the [0.05, 0.95] interval. These boundary solutions represent
”degenerate” cases where the observed marginal variances are so restrictive that they
force the functional variance to the geometric limits of the probability simplex (e.g. re-
quiring perfect correlation or extreme anti-correlation to satisfy Σ1 = 0). Because such
boundary solutions often imply unstable or implausible uncertainty structures driven
by sparse survey data, we exclude these tasks to ensure that downstream inference is
robust to numerical edge cases.

Table D3. Variance Position and Outlier Summary

All Tasks (N = 12,495)

Metric Value Tasks Removed

Mean normalized position 0.39 (0.13) n/a

Outlier (position < 0.05 / > 0.95) 5.36% 670

D.2.3. Sensitivity To Measurement Errors

We assess the stability of task-level functional variances to modest perturbations of
the marginal targets.

Diagnostics definitions. Let v = (sep)
2 denote the design-based marginal variances

for the eight frequency categories and w ∈ R8 the annual-occurrence weights. For each
task, with completed covariance Σ̂, the baseline functional variance is

V0 = w⊤Σ̂w. (D9)

We form perturbed diagonal targets v(+) = (1+τ) v and v(−) = (1−τ) v with τ = 0.05,
and recompute two completions by solving the same SDP used at baseline (PSD, fixed

diagonal, simplex tangency Σ1 = 0). Let V+ = w⊤Σ̂(+)w and V− = w⊤Σ̂(−)w. We
then compute

∆+ = V+ − V0, ∆− = V− − V0, δrel± =
|∆±|

max(10−9, |V0|)
. (D10)

To diagnose linearity and symmetry, we use the symmetrized relative change

symm rel =

∣∣∆+ +∆−
∣∣

max(10−9, max{|∆+|, |∆−|})
, (D11)

51



Tasks are flagged if (i) symm rel > 0.1 (nonlinear/asymmetric response), or if (ii)
the directional relative changes leave the expected linear band δrel± /∈ [0.9τ, 1.1τ ] =
[0.045, 0.055].

Results and discussion. Table D4 summarizes the stability of the functional vari-
ance estimator under ±5% perturbations of the input marginals.

The estimator exhibits high local stability for the vast majority of the sample. The
mean symmetrized relative change is one order of magnitude lower than the pertur-
bation (2.80 × 10−3 against τ = 5% (5 × 10−2). This suggests that the estimator’s
response is dominated by a stable linear pass-through, with non-linear residuals re-
maining negligible for the typical task.

However, we detect numerical instability in a small subset of the data. Approx-
imately 0.38% of tasks exhibit high nonlinearity (symm rel > 0.1), and a similar
fraction fail the directional bounds test, where the output variance shifts by more (or
less) than the expected ≈ 5% linear pass-through. In total, 52 unique tasks (0.42%)
are flagged as sensitive. These cases likely correspond to covariance structures that are
”brittle”–statistically feasible but poised on a manifold where small changes in con-
straints force large reconfigurations of the off-diagonal elements. To ensure robustness,
these unstable tasks are excluded from the final analytical sample.

Table D4. Sensitivity Analysis (for ±5% perturbation)

All Tasks (N = 12,495)

Metric Value Tasks Removed

Symmetric relative change 2.80 · 10−3 (1.93 · 10−2) n/a

High sensitivity (> 10%) 0.38% 48

∆ rel. (minus) out of range 0.19% 24

∆ rel. (plus) out of range 0.20% 25

Total unique tasks affected 0.42% 52
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D.3. Weighting Specifications Robustness

To map the ordinal frequency scales from O*NET to cardinal annualized occurrences,
we employ three distinct weighting vectors (w). These specifications test the sensitivity
of our results to assumptions regarding the work calendar (e.g. 260 vs. 365 days) and
the relative weight of high-frequency tasks. Table D5 details the mapping for each of
the R = 8 possible frequency categories in our estimation framework.

• Baseline (wbase): Assumes a standard work year (52 weeks, 5 days/week, 8
hours/day). The maximum frequency (Index 7) corresponds to continuous hourly
execution (52× 40 = 2080).

• Aggressive (wagg): Assumes a continuous flow or ”24/7” availability model
(365 days). This tests the upper bound of task volume.

• Compressed (wcomp): Applies a non-linear transformation that significantly
dampens the ratio between high-frequency and low-frequency tasks. By reduc-
ing the max-to-min ratio from 2080:1 to 100:1, this specification tests whether
the identification of task intensity is driven solely by the dominance of the top
frequency category.

Table D5. Cardinalization of Frequency Categories under Alternative Specifications

Index Frequency Baseline (wbase) Aggressive (wagg) Compressed (wcomp)

0 Never 0 0 0

1 Yearly 1 1 1

2 Quarterly 4 6 2

3 Monthly 24 52 5

4 Weekly 104 156 10

5 Daily 260 365 25

6 Multiple Daily 780 1,095 50

7 Hourly 2,080 2,920 100

Max-to-Min Ratio 2080:1 2920:1 100:1

Notes: The Baseline vector assumes a standard 260-day work year. The Aggressive vector assumes a 365-day

year. The Compressed vector imposes an arbitrary log-like scale to test robustness to heavy-tailed distributions.
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Appendix E.

E.1. Crosswalks

Table E1. Sample Construction and Occupational Mapping Coverage

Step Occupation codes # occ. # tasks % Labor Input % Labor Cost

(1) Baseline O*NET SOC 879 17,639 n/a n/a

(2) Filter valid profiles O*NET SOC 663 12,495 n/a n/a

(3) Covariance completion O*NET SOC 661 11,775 n/a n/a

(4) Mapping SOC to Census Census 2010 290 8,492 65.3 60.8

(5) Census 2010 to Dorn 1990 Dorn 1990 218 8,492 45.7 41.5

Notes: Rows summarize the progressive restriction of O*NET task profiles and subsequent crosswalks from

O*NET SOC to Census 2010 occupation codes.

• The analysis starts from the O*NET 29.0 Task Ratings data, comprising 879
unique O*NET-SOC occupations and 17,639 unique task statements.

• We restrict attention to statistically informative task profiles by dropping tasks
that lack incumbent responses or yield non-significant/incalculable estimates.
This results in 663 well-defined occupational profiles spanning 12,495 tasks.

• We then characterize within-occupation task-share objects and apply our
covariance-completion and conditioning checks, removing ill-conditioned profiles.
This yields 661 occupations characterized by 11,775 tasks.

• Next, we map O*NET-SOC occupations to the Census 2010 occupational tax-
onomy. Tasks are grouped to Census occupations and the resulting task shares
are renormalized within each Census code. The resulting sample covers 65.3% of
aggregate labor input (FTEs) and 60.8% of aggregate labor cost (earnings).

• For comparability with benchmarks that use the Dorn (1990) classification, we
further crosswalk Census 2010 occupations to Dorn 1990 codes. This yields 218
Dorn occupations, while leaving the task universe unchanged at 8,492 tasks, and
captures 45.7% of labor input and 41.5% of labor cost.
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Appendix F.

F.1. Task Bundling and Specialization

This appendix defines the task concentration measures used in the main text and
reports additional descriptive statistics.

F.1.1. Core task share (Top-n share).

Let Ki,topn denote the set of the n tasks with the highest task shares in occupation i,
where tasks are ranked in descending order of π̂i,k. The Top-n share is defined as

Ci,n =
∑

k∈Ki,topn

π̂i,k. (F1)

This measure captures the extent to which an occupation’s labor input is concentrated
in a small core set of tasks.

F.1.2. Task Gini and normalized Gini.

We measure inequality in labor input allocation using an occupation-level Gini coeffi-
cient, defined as the relative mean absolute difference of task shares:

Gi =
1

2Ki

Ki∑
k=1

Ki∑
j=1

∣∣πi,k − πi,j
∣∣, (F2)

where Ki is the number of distinct tasks in occupation i and πi,k denotes the share of

total labor input allocated to task k, with
∑Ki

k=1 πi,k = 1. This statistic captures the
degree of concentration of labor input across tasks within an occupation.

Because the maximum attainable Gini mechanically depends on the number of
tasks–reaching Gmax

i = (Ki − 1)/Ki under complete task concentration–we report a
normalized Gini index:

G̃i ≡ Gi

(Ki − 1)/Ki
. (F3)

Substituting the expression for Gi and using the probability normalization yields the
simplified closed-form:

G̃i =

∑Ki

k=1

∑Ki

j=1

∣∣πi,k − πi,j
∣∣

2 (Ki − 1)
. (F4)

The normalized Gini satisfies G̃i ∈ [0, 1] for all occupations with Ki > 1, mapping a
uniform task allocation to 0 and a single-task bottleneck to 1, and is therefore directly
comparable across occupations with differing task counts. Higher values of G̃i indicate
greater task specialization, while lower values reflect more even multitasking across
task content.
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F.1.3. Work Content

We model work content as the aggregate labor input allocated to specific functional
categories, following the taxonomy of Autor, Levy, and Murnane (2003). Specifically,
the “Routine” content of an occupation is measured as the sum of task shares classified
as either routine-manual or routine-cognitive:

Routi =
∑
k∈Ri

π̂i,k, (F5)

where Ri is the set of tasks classified as routine in occupation i, and π̂i,k is the
estimated task share for task k in occupation i. Routi is strictly bounded between 0
and 1 and represents the total share of occupational labor input dedicated to routine
work.

F.1.4. Task Breadth

To distinguish between the composition of work and its variety, we define task breadth
as the total number of distinct tasks performed within an occupation:

Bi = ln |Ki|, (F6)

where Ki is the set of all tasks mapped to occupation i.

F.2. Specialization descriptive statistics

The statistics in Table F1 reinforce the main-text point that occupations typically
have a small set of dominant tasks. The median top-3 share is 0.324, while the top-10
share is 0.786 at the median, indicating that a modest subset of tasks accounts for most
labor input. The raw index Gi mechanically decline with the number of observed tasks,
which varies substantially across Census occupations; the normalized indices address
this comparability issue while preserving substantial dispersion across occupations.
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Appendix G.

G.1. Marginal Effect Results

Table G1. Implied Marginal Effect of Occupational Focus at Different Routine Inten-
sities

RoutZ ∂ lnw/∂SpecZ SE p-value

−2 0.1014 0.0276 0.000

−1 0.0820 0.0195 0.000

0 0.0626 0.0137 0.000

1 0.0432 0.0138 0.002

2 0.0238 0.0197 0.226
Notes: Marginal effects are computed from the interaction model (Section 5.2) using ∂ lnw/∂SpecZ = β̂S +
β̂SRRoutZ . Standard errors are computed using the delta method based on the estimated covariance matrix

of (β̂S , β̂SR).
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G.2. Robustness – Annual Earnings

Table G2. Occupation Specialization and Annual Earnings

(1) (2) (3) (4)

Specialization 0.0868*** 0.0857*** 0.0620*** 0.0639***

(0.0160) (0.0167) (0.0138) (0.0140)

Volume 0.00552 0.00481 0.00429

(0.0349) (0.0302) (0.0305)

Routine -0.111*** -0.105***

(0.0143) (0.0147)

Specialization × Routine -0.0195*

(0.0100)

Control variables ✓ ✓ ✓ ✓
R2 0.647 0.647 0.655 0.655

Clusters (occupations) 290 290 290 290

N (workers) 838,747 838,747 838,747 838,747
Notes: The dependent variable is log annual earnings in 1999 CPI-adjusted dollars. Occupational special-

ization is the standardized normalized task Gini coefficient. Routine intensity is the standardized share of
labor input devoted to routine tasks. Task volume is the log number of distinct tasks mapped to occupation

j. All specifications include controls for gender, age, age squared, education, industry fixed effects, log usual

hours, and weeks worked fixed effects, and are estimated using IPUMS person weights. Robust standard
errors clustered at the occupation level are reported in parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10.

In Table G2, we re-examine the returns to specialization using log annual earnings as
the dependent variable. This robustness check serves a dual purpose. First, it mitigates
potential measurement error inherent in derived hourly wages. Second, and more criti-
cally, it allows us to distinguish between the price of specialized labor and the quantity
of labor supplied—or, distinctly, the difference between the total return to a job and
the “cost of work” (effort and hours) required to sustain it.

A potential concern with the baseline hourly wage results is that specialized oc-
cupations might simply be more demanding, requiring workers to supply significantly
more hours (the intensive margin) to achieve proficiency. If the specialization premium
were entirely explained by longer work weeks, it would represent a compensation for
the disutility of labor—a higher “cost of work”—rather than a productivity premium.

Column (1) documents a robust positive association between occupational specializa-
tion and annual earnings (β = 0.0868, p < 0.01). Crucially, because all specifications
control for log usual hours and weeks worked, this coefficient captures the shift in earn-
ings net of labor supply. This implies that the specialization premium is not an artifact
of specialized workers simply working longer hours; rather, earnings are systematically
higher in occupations with more concentrated task structures, even conditional on la-
bor supply. Columns (2) through (4) reinforce that this price premium is distinct from
other task-based attributes.

In Column (2), we introduce Task Volume to test the hypothesis that specialization
is merely a proxy for job simplicity (i.e. doing fewer things). The coefficient on Task
Volume is statistically indistinguishable from zero (β = 0.00552), while the special-
ization coefficient remains stable at 0.0857. This result is striking: it suggests that
the labor market does not penalize “narrow” jobs for their lack of breadth, nor does
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it reward “complex” jobs (high task volume) simply for their multifariousness. The
premium is driven by the concentration of effort, not the raw count of duties.

Column (3) conditions on Routine Intensity. While the magnitude of the specializa-
tion coefficient attenuates (from 0.0857 to 0.0620), it remains economically significant
and precisely estimated (p < 0.01). Furthermore, Routine Intensity itself is associated
with a significant decrease in annual earnings (β = −0.111, p < 0.01).

Column (4) introduces an interaction between specialization and routine intensity to
explore whether the returns to concentration are moderated by the nature of the tasks
performed. We find a modest negative interaction (β = −0.0195), significant at the
10% level. Comparison with the baseline specifications reveals a consistent stability
in the specialization premium across various controls. Collectively, these results sug-
gest that the specialization premium is consistent with higher returns to concentrated
task structures, rather than compensation for increased labor supply or a mechanical
reflection of routine task content.
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G.3. Robustness – Full-Time Full-Year Workers

In Table G3, we restrict the sample to full-time, full-year (FTFY) workers—defined
as those who worked at least 50 weeks and usually worked at least 35 hours per week.
This restriction reduces the sample size from 838,747 to 625,822 but ensures that our
estimates are not driven by part-time labor, gig work, or workers with tenuous labor
market attachment.

Table G3. Wage Associations with Occupational Specialization (Full-Time Full-Year
Workers)

(1) (2) (3) (4)

Specialization 0.0913*** 0.0906*** 0.0629*** 0.0633***

(0.0151) (0.0155) (0.0129) (0.0131)

Volume 0.00309 0.00592 0.00617

(0.0342) (0.0289) (0.0291)

Routine -0.111*** -0.105***

(0.0142) (0.0147)

Specialization × Routine -0.0172*

(0.00991)

Control variables ✓ ✓ ✓ ✓
R2 0.347 0.347 0.366 0.366

Clusters (occupations) 290 290 290 290

N (workers) 625,822 625,822 625,822 625,822
Notes: The dependent variable is log hourly wages in 1999 CPI-adjusted dollars. The sample is restricted to

full-time full-year workers (at least 50 weeks worked and 35 usual weekly hours). Occupational specialization

is the standardized normalized task Gini coefficient. Routine intensity is the standardized share of labor
input devoted to routine tasks. Task volume is the log number of distinct tasks mapped to occupation j.

All specifications include controls for gender, age, age squared, education, and industry fixed effects, and

are estimated using IPUMS person weights. Robust standard errors clustered at the occupation level are
reported in parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10.

The results strongly reinforce the baseline findings. In Column (1), the coefficient
on specialization is 0.0913, indicating that the returns to occupational focus remain
robust among core labor market participants. This effectively rules out the concern
that the specialization premium is an artifact of high-wage consulting or irregular
employment arrangements.

Columns (2) through (4) follow the familiar pattern: Task Volume remains statisti-
cally insignificant, and the introduction of Routine Intensity in Column (3) attenuates
the specialization coefficient to 0.0629 but does not eliminate it. Notably, the inter-
action term in Column (4) is −0.0172 and is statistically significant at the 10% level,
suggesting a slight moderation of the specialization premium in highly routine occu-
pations. Overall, these results support the conclusion that the association between
occupational specialization and wages is robust across standard employment relation-
ships.
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G.4. Conditional Partial Regressions
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Figure G1. Conditional Partial Regression of Log Hourly Wages on Occupational Spe-
cialization.

Figure G1 presents a conditional partial regression plot of log hourly wages on
occupational specialization (SpecZ), net of routine intensity, breadth, age, educa-
tion, gender, and industry. Each circle represents one of the 290 Census occupations,
with marker size proportional to its employment share. The solid red line shows the
weighted least-squares linear fit, yielding a statistically significant positive slope of
0.061 (s.e. = 0.013), consistent with a wage premium for jobs with more concentrated
task structures.
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Figure G2. Conditional Partial Regression of Log Hourly Wages on Routine Intensity.

Figure G2 presents a conditional partial regression plot of log hourly wages on rou-
tine intensity (RoutineZ), net of occupational specialization, task volume, and worker
demographics. Each circle represents one of the 290 Census occupations, with marker
size proportional to its employment share. The fitted line exhibits a negative slope
of −0.108 (s.e. = 0.014), indicating that, holding specialization and other factors
constant, a one-standard-deviation increase in an occupation’s routine task share is
associated with approximately a 10.8% reduction in hourly wages.
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G.5. Correlation of Different Intensive Margin Proxies

Figure G3 and Figure G4 report pairwise correlations across intensive-margin proxy
schemes. Across both correlation measures, all correlations are positive, indicating
that the different schemes tend to rank occupations in the same direction on aver-
age. However, the strength of alignment varies by proxy pair. The correlation between
πi,k and the rating-based schemes is moderate—approximately 0.48–0.56 with impor-
tance and 0.40–0.46 with relevance—while its correlation with the core-task indicator
(“coreweight”) is weaker, around 0.31–0.38.

Correlations among the rating/heuristic schemes are higher. In particular, relevance
and coreweight are strongly correlated (about 0.71–0.81). This pattern is consistent
with the O*NET task classification rules: coreweight is a binary indicator equal to 1 if
and only if a task is classified as Core, which requires (i) relevance ≥ 67% and (ii) mean
importance ≥ 3.0 on the 1–5 scale. A task is classified as Supplemental otherwise.
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G.6. Marginal Effect of Specialization for Different Intensive Margin
Proxies

Table G4. Marginal effect of specialization on log hourly wage across routine intensity,
by intensive-margin proxy

Routine intensity RZ Task-share (π) Importance Relevance Core–supp. prior (2:1)

−2 0.101*** -0.049 -0.034 -0.049*

(0.028) (0.035) (0.030) (0.027)

−1 0.082*** -0.045* -0.030 -0.036*

(0.019) (0.024) (0.020) (0.019)

0 0.063*** -0.041** -0.026* -0.023

(0.014) (0.018) (0.016) (0.015)

1 0.043*** -0.038* -0.023 -0.011

(0.014) (0.022) (0.021) (0.020)

2 0.024 -0.034 -0.019 0.002

(0.020) (0.031) (0.032) (0.029)

Notes: Entries are average marginal effects from margins, dydx(Spec Z) at(Routine Z = r) evaluated at

r ∈ {−2,−1, 0, 1, 2} for the fully specified wage model. Robust standard errors in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01. Uniform task weights are excluded because uniform bundles imply a constant

within-occupation concentration measure (normalized Gini = 0), making specialization mechanically

uninformative.
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